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n this article, we study the newsvendor problem with endogenous setting of price and quoted lead-time. This problem
I can be observed in situations where a firm orders semi-finished product prior to the selling season and customizes the
product in response to customer orders during the selling season. The total demand during the selling season and the
lead-time required for customization are uncertain. The demand for the product depends not only on the selling price but
also on the quoted lead-time. To set the quoted lead-time, the firm has to carefully balance the benefit of increasing
demand as the quoted lead-time is reduced against the cost of increased tardiness. Our model enables the firm to deter-
mine the optimal selling price, quoted lead-time, and order quantity simultaneously, and provides a new set of insights to
managers.
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ment and shipment is random. On the one hand, a
short quoted lead-time not only helps increase
In environments where customers are spoiled with ~ demand but also increases the number of late ship-
choices, competing only on price is not enough. Cus- ments. On the other hand, a long quoted lead-time
tomers also pay considerable attention to other not only helps reduce the number of late shipments
dimensions of the product or service, such as quality, but also decreases demand. We study the questions of

1. Introduction

delivery speed, and other elements of customer ser- how to stock, price, and quote a lead-time for such a
vice. Among the elements of customer service, it is ~ product.
well known that speed and consistency of delivery Our study is motivated by settings with a single
time are the two most important (Ballou 1998, Sterling stocking cycle of semi-finished product for each gen-
and Lambert 1989). eration of a customized product. Such settings arise in
In this article, we consider decisions surrounding a customized seasonal goods and customized products
customized product with a short selling season and  with a short life-cycle relative to the replenishment
demand that is influenced by both price and quoted  lead-time. For example, Bradfords has to order sea-
lead-time. The firm’s production system has a pur- sonal items ahead and then packs them into custom-
chase-to-stock element and a customize-to-order ele- ized hampers according to customer orders received
ment, with a one-time order of semi-finished product during the Christmas selling season (http://www.
prior to the selling season and customization during  bradfordsbakers.com). Nike’s custom shoe division
the selling season. A firm places an order for semi-fin- orders components with colors and features that

ished product prior to the selling season with no respond to frequently changing fashions and product
opportunity for follow-up replenishment orders. The innovations (http://www.nikeid.nike.com/nikeid/).

selling season begins and customer orders arrive over More generally, our study applies to firms that must
time. In response to each customer order, the firm set price and lead-time for a product and market with
finishes the product to customer specifications. The  the following characteristics: (i) short selling season
actual customization lead-time between order place- (e.g., semi-finished stock is acquired prior to the
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selling season with no future replenishment), (ii) a
positive and random lead-time between the receipt
and shipment of customer order (e.g., for product cus-
tomization), (iii) demand that is influenced by both
price and quoted lead-time, and (iv) a firm that does
not dynamically adjust the price and quoted lead-
time over the selling season.

The research questions that motivate the study and
the resulting contributions of the paper can be sum-
marized as follows:

1. How should the firm make optimal decisions
regarding the amount of inventory to be ordered prior
to the selling season, the selling price, and the quoted
lead-time on customized delivery under lead-time
and demand uncertainty?

As a consequence of the above research question,
this article brings together two major research streams
by introducing a model that combines features pres-
ent in both. One research stream is the Price-Setting
Newsvendor Problem (PSNP) wherein a firm must
determine the price and order quantity of a short life-
cycle product. The other research stream is the pricing
and lead-time quotation literature wherein a firm
must determine the price and lead-time of a long life-
cycle product. In the first stream, the firm does not
determine a quoted lead-time, and lead-time uncer-
tainty is not considered in the formulation. In these
models, demand is satisfied immediately from stock.
In the second stream, there is no stocking decision
and sufficient raw materials are assumed to be avail-
able. Our model enables the firm to determine simul-
taneously the optimal selling price, order quantity,
and quoted lead-time.

2. Price-Setting Newsvendor Problem with an addi-
tive random error term describing demand uncer-
tainty suggests that a firm should reduce its optimal
selling price with increasing demand uncertainty,
resulting in an increase in expected demand. The
firm’s reaction to increasing demand uncertainty
hurts the firm but benefits consumers. Does this hold
true when the firm has to quote a delivery lead-time
and operates under both lead-time and demand
uncertainty?

In PSNP, where lead-time uncertainty is omitted,
the firm has the incentive to reduce its demand uncer-
tainty as it results in an increase in its optimal selling
price and expected profit. However, the reduction in
demand uncertainty hurts consumers as the selling
price increases. While we find the same directional
effects regarding demand uncertainty, this article
shows that the optimal quote for delivery lead-time
decreases with reduced demand uncertainty. The
consequence of this finding is that there is at least a
segment of consumers—specifically, those who are
lead-time sensitive but price insensitive—who benefit
from reduced demand uncertainty.

3. Is the inclusion of lead-time uncertainty in PSNP
equivalent to an increased level of demand uncer-
tainty?

One might intuit that incorporating lead-time uncer-
tainty into PSNP would yield similar results with
increased level of demand uncertainty. The analysis in
section 4.2.1 shows that the influence of lead-time
uncertainty is different from that of demand uncer-
tainty. More specifically, while an increase in demand
uncertainty is known to cause a decrease in the optimal
selling price in PSNP (with an additive random error
term), an increase in lead-time uncertainty results in
an increase in the optimal selling price in our problem,
a lower average demand, and a lower expected profit.
Thus, while consumers benefit from increasing levels
of demand uncertainty, they are worse off under
increasing levels of lead-time uncertainty.

4. How does the presence of demand uncertainty
influence the impact of capacity on the firm’s optimal
decisions?

Consistent with the pricing and lead-time quotation
literature, when demand uncertainty is omitted, we
find that the optimal selling price and quoted lead-
time are increasing in the mean service time. Thus, a
decrease in capacity (equivalently, an increase in the
mean service time) results in an increase in the selling
price and quoted lead-time, hurting all consumers.
However, when demand uncertainty is included, this
notion is not consistently applicable. While the opti-
mal quoted lead-time increases in the mean service
time, the optimal selling price can be decreasing. This
result occurs when the firm has a small customer
base, so it cannot afford to increase the selling price
and lose its customers.

5. In addition to addressing the above research
questions, this article makes a technical contribution
by introducing a general multiplicative random lead-
time model that leads to analytical optimal solutions,
enabling us to provide a comprehensive discussion
on various factors influencing the firm’s optimal deci-
sions and expected profit.

In the next section, we outline the related literature.
Section 3 presents the model and analysis. Section 4
presents managerial implications, and section 5 con-
cludes the paper. All proofs and technical derivations
are provided in Appendix S1.

2. Literature Review

As noted above, this article brings together two
streams of literature. In one area of study, research has
investigated the optimal selling price and inventory
level decisions under demand uncertainty, namely
the PSNP, ignoring the decision regarding a promised
lead-time and the uncertainty associated with actual
delivery time. In the other area of study, pricing
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and lead-time decisions are made in the presence of
lead-time uncertainty, but the influence of stocking
decisions is not investigated. In this section, we review
both streams of research and present how our work is
related to each.

The modeling approach used in this article regard-
ing the optimal selling price and inventory decisions
is similar to the models that examine PSNP with lost
sales. Specifically, when the firm does not have suffi-
cient stock, excess demand is not backlogged, and the
opportunity to generate revenues through sales is
foregone. The operating environment described in
our article is similar to those presented in Zabel
(1970), Young (1978), Petruzzi and Dada (1999), Yao
et al. (2006), Wu et al. (2011), and Kocabiyikoglu and
Popescu (2011). Dana and Petruzzi (2001) present a
variation of these papers where they incorporate the
consumer’s expected utility maximization into the
definition of demand uncertainty, but still consider
the case of lost sales. Like in these papers, the choice
of the selling price in our article influences the
expected shortage cost and the dynamics between the
expected costs of shortages and leftovers. Petruzzi
et al. (2009) extend this work by allowing demand
to depend on the order quantity as well as price.
Gavirneni and Isen (2010) apply a verbal protocol
analysis to a newsvendor experiment to study the
behavioral aspects of the decision-making process.
However, the above studies assume that the firm
operates under short and deterministic lead-times,
and does not have to quote a lead-time to its consum-
ers. The firm’s decisions are price and order quantity.
Our study expands their work by incorporating lead-
time uncertainty into the model, and by including
promised lead-time along with price and quantity as
the decision variables.

Chatterjee et al. (2002) provide a detailed discus-
sion on delivery guarantees and its relationship with
marketing and operations. Li (1992) provides the
optimal stocking decisions for make-to-order and
make-to-stock firms in monopolistic and competition
settings, where the demand is influenced by con-
sumers’ preference of price, quoted lead-time and
quality. Li and Lee (1994) extend this model to the
setting where firms compete on price and processing
times. Webster (2002) studies pricing, lead-time, and
capacity decisions for a make-to-order product. Liu
et al. (2007) consider the pricing and lead-time deci-
sions from a supplier—retailer perspective. Demand in
their model is sensitive to price and lead-time deci-
sions, but is deterministic. Zhao et al. (2011) compare
a single price and lead-time quotation pair with a
menu of price and lead-time quotes. Allon et al.
(2011) examine strategic consumer behavior in set-
tings where a firm posts price and information related
to lead-time. The focus is on identifying conditions

for Nash equilibrium and on understanding the
impact of the precision of lead-time information on
profitability and market share. There is a rapidly
growing literature on strategic consumer behavior
(e.g., the reader can review Netessine and Tang [2009]
for examples), although with the exception of Allon
et al. (2011), decisions other than the combination of
price and lead-time are considered.

Demand uncertainty in the price and lead-time
literature is incorporated into the modeling approach
by using queuing systems. In these studies, it is com-
monly assumed that the service facility follows a
G/G/s queuing system. The sojourn time is used to
model the actual delivery time. For high service
levels, this can be approximated by an exponential
function, resulting in M/M/1 queuing systems. Using
this approach, So and Song (1998) and Palaka et al.
(1998) determine price, quoted lead-time, and capac-
ity simultaneously for a single firm. So (2000) ana-
lyzes the competition case and finds that the optimal
price and lead-time decisions in an oligopolistic mar-
ket are similar to those in the monopolistic setting. It
is well reported that M/M/1 has its limitations in
practice despite the convenience it provides in analy-
tical derivations. Using a slightly different approach,
Easton and Moodie (1999) also study pricing and
lead-time decisions for make-to-order firms with an
emphasis on the influence of contingent orders. Le-
derer and Li (1997) examine the pricing and lead-time
decisions in a competition setting while focusing on
the firm’s choice of the production scheduling priority
(e.g., FIFO). Our work differs from these studies in
that we consider the optimal stocking decision along
with the price and lead-time decisions.

3. Model Analysis

The firm must determine the stocking quantity of a
semi-finished product g, selling price p, and quoted
lead-time I for a customized product to be sold during a
short selling season. The firm knows how the probabil-
ity distribution of total demand and the probability dis-
tribution of order lead-time are affected by the values of
pand I. The probability distributions are a consequence
of the price- and lead-time-dependent stochastic pro-
cess of customer orders during the selling season.

The timing of events in our model is as follows (see
Figure 1): (i) the firm selects the values of p, g, and [;
(ii) an order of g semi-finished products arrives; (iii)
the selling season begins and customer orders arrive
over time; and (iv) the selling season ends and the
firm salvages any remaining semi-finished product at
a loss.

Let d; denote random demand during period i of
the selling season that lasts for n periods. We assume
the following consumer choice model that determines
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Figure 1 The Timing of Events in Our Model
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d;. There are m consumers who consider purchasing a
unit of the product in each period. Consumers have a
standard waiting cost rate of c,, and will purchase the
product only if the utility of ownership is more than
p +c,l. We assume that customers interpret the
quoted lead-time as credible, which Allon et al. (2011)
show is at Nash equilibrium under various models
that incorporate strategic consumer behavior. Con-
sumer utility in period i is uniformly distributed over
[u; — ¢, u; + ], and thus the fraction of consumers
who purchase the product in period i is (u; + ¢ —
p — cul)/(20). The mean utility u; in period i is a ran-
dom variable and u; are ii.d. Letting E[u;] = p,, the
random demand during period i is

d; = x(p, l) + &,

where x(p, 1) = m(u, + {—p —c,l)/Q0) = Eld;1p, 1]
and & = m(u; — w,)/(20) are i.i.d. with E[g] = 0. Note
that ¢; reflects the degree of randomness in mean
consumer utility in a period and, consequently, the
degree of uncertainty in demand. If u; is fixed (.e.,
deterministic), then d; = x(p, ).

Our model of consumer choice results in additive
price- and lead-time-dependent model of demand
that is linear in p and I. While not derived from an
underlying consumer choice model, Rao et al. (2005)
also employ additive price- and lead-time-dependent
model of random demand.

The total demand during the selling season is

D=> di=ipl)+e,

where A(p, ) =n x x(p, I) and &= Y. Note that
Ele] =0, and thus A(p, I) is the expected demand
during the selling season. Expected demand is linear
in p and I, and we write it as

i(p’l) :O‘_ﬁp_glv (1)

which is identical to the demand model in Liu et al.
(2007). The value of o is the market potential over
the selling season, and the values of f and 0 are

price and lead-time sensitivity factors, respectively.
The noise term ¢ is defined on the range [A, B] with
mean 0 and standard deviation o, where A <0 and
B > 0. Let F() and f(*) represent the cumulative dis-
tribution function (cdf) and the probability density
function (pdf) of ¢, respectively.

Our model of demand during the selling season is
similar in spirit to the model in Petruzzi et al. (2009)
in the sense that random demand is also influenced
by two decisions. In the case of Petruzzi et al. (2009),
these decisions are price and order quantity, whereas
the decisions in our model are price and quoted lead-
time.

To describe the expected lead-time-related costs, we
need to specify the probability distribution of lead-
time associated with each sale. We emphasize that
the lead-time distribution applies only when semi-
finished product is in stock. As in Baron and Milner
(2009), we assume that the probability distribution
of lead-time during a fraction of the selling season is
representative of the probability distribution of lead-
time during the entire selling season (see also Steck-
ley et al. 2009). Consequently, the value of the order
quantity g does not affect the lead-time distribution
associated with each sale. The probability distribu-
tion of the lead-time T required for customization
depends on the customization process and on the
demand process, and the demand process is affected
by the price and quoted lead-time decisions through
the average demand A. Let G,(-) and g,() denote the
lead-time cdf and pdf, respectively.

The firm incurs inventory-related costs and lead-
time related costs, which are described below.

Inventory-related costs: If the firm holds too much
semi-finished inventory, then there is a per-unit cost i
for leftovers (e.g., increase in per unit holding cost on
an unsold unit vs. a sold unit, less the end-of-season
salvage value). While we allow the possibility of neg-
ative h, we assume ¢ + h > 0 (i.e., there is a cost of
over-ordering), where c is the unit purchasing cost. If
shortages occur, there is a non-negative loss of good-
will cost s per unit short.

Lead-time-related costs: There are lead-time-related
costs that include the echelon holding cost h; per
unit-period if t <[, or tardiness (penalty) cost s; per
unit-period if t > [. We emphasize that the lead-time-
related tardiness cost s; only applies when there is
positive stock of semi-finished product, whereas the
inventory-related goodwill cost s only applies after
stock is depleted. The echelon holding cost ; is the
difference in the costs of holding a finished product
and a semi-finished product, which is non-negative
due to the value added during customization. (Here-
after, we refer to h; as simply holding cost.) In settings
where it is acceptable to ship an order early, then
h; = 0 (e.g., there is no holding cost because the firm
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ships as soon as an order is complete). The expected
lead-time cost associated with each unit of sales dur-
ing the selling season is

N
C(l, 1) = h,/
0

which depends on A through lead-time distribution
G0).

The firm’s objective is to determine g, p, and [ to
maximize expected profit. It is useful to apply a trans-
formation of variables to facilitate the optimization
procedure. We define z = g — 4, which is known as
the stocking factor (Petruzzi and Dada 1999). The
expected profit of the firm can then be expressed as:

(I —t)g(t)dt + s /IDO (t—Dg;(t)dt, (2)

(z,p,l) = —c(A+z)
+ /A [(p = CU2) G+ %) = h(z = x)|f(x)dx

+ [ - C )G+ ) —stx - 2)] s

=p-c—C(lA1)L— (h+c)/ (z — x)f(x)dx

, A
—(s—&—p—c—C(l,i))/ (x — 2)f(x)dx

=Y¥(p,l) - L(z,p,1),
(3)
where
Y(p.D)=(p—c—C 1)) (4)
L(z,p,l) = (h+c)A(z) + [s +p — c = C(, 1)|Q(z), (5)

2 = [ - ofo,

B
Qz) = /Z (x — 2)f(x)dx.

Equation (4) represents the firm’s profit function
when ¢ is replaced by 0, that is, when total demand
during the selling season is equal to its expected
value. Equation (5) is the loss function, which
assesses an overage cost i + ¢ and an underage cost
s+p—c— C(, ). Note that the firm’s expected
profit, as expressed in Equation (3), is analogous to
the newsvendor profit in the absence of demand
uncertainty ¥(p, I), less the expected loss that occurs
as a result of the presence of uncertainty L(z, p, I) (Pet-
ruzzi and Dada 1999).

We have °TI(z, p, )/3z* = —[h +s +p — CU, VIf
(z) <0, which implies that II(z, p, I) is concave in z for
given p and I. Thus, we can reduce the original opti-
mization problem over three variables to one over
two variables p and [ by first solving for the optimal

value of z as a function of p and I and then substitut-
ing the result back into Il(z, p, I). However, the result-
ing expected profit function is neither concave in p
(for a given I), nor concave in [ (for a given p), which
precludes us from obtaining the optimal p and [/ ana-
lytically. To tackle this technical difficulty, we intro-
duce another transformation of variables to treat 4,
instead of p, as our decision variable. From Equation
(1), we can write

(= —00)

Equation (3) becomes

(6)

M(z, 1,1) = E (= 4— 01 —c— C(1, z)] i (h+)A(2)

. E} (=7 —0l) +s—c— C(ZJL)]Q(Z).
(7)

In what follows, we use a sequential procedure to
first solve for optimal I, then optimal 4, and finally
optimal z.

3.1. Optimal Lead-Time Quotation

We first show Il(z, Z, I) is concave in [ for given 4 and
z. The following lemma provides the optimal lead-
time quotation as a function of the average demand.

LemMma 1. The optimal lead-time to quote is independent
of z. It is determined uniquely as a function of any given
/. as follows:

I'=1() = G;'(v), (8)

where v = (s; — 0/B))(s; + hy) and G,”'(-) is the inverse
of the lead-time distribution G,(-).

The value of vis the probability that actual lead-time
will not exceed the quoted lead-time. It is immediate
that v < 1.In addition, 0/ f can be interpreted as cus-
tomers’ waiting cost per unit of the quoted lead-time
I G.e., 0/ = cy). If the value of 0/f is more than the
firm’s tardiness cost s, then it is optimal for the firm to
quote a zero lead-time regardless of the mean demand.
The above formula is analogous to the newsvendor
critical fractile result, with underage costs; — 0/f and
overage cost 0/f + h. Note that " is dependent on
price p through /, for example, Lemma 1 could be
alternatively phrased as the optimal lead-time is deter-
mined uniquely as a function of p.

3.2. Lead-Time Distribution
Thus far, we have characterized the optimal lead-time
quotation. It is, however, difficult to further solve for
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the optimal price without knowing the functional
form of the lead-time distribution G;(-), which
depends on average demand /. Most work on similar
topics in the literature assume an M/M/1 production
system (e.g., Boyaci and Ray 2003, Palaka et al. 1998,
So 2000), and consequently the lead-time is the
steady-state customer sojourn time, with distribution
being given by

Gi(t) =1 —e 7t

where p is the mean service rate, and 4 is the mean
demand (see, e.g., Wolff 1989). Liu et al. (2007), for
instance, show that the optimal 4 can be uniquely
determined given M/M/1 and some other assump-
tions.

Limitations of the M/M/1 lead-time distribution,
arising from its restrictive technical requirements,
have long been recognized by researchers. In reality,
hardly any practical production environment is con-
sistent with the stringent assumptions. The wide-
spread use of M/M/1 is mainly due to its analytical
tractability (Palaka et al. 1998).

We propose a different lead-time model, which
takes the multiplicative form. In particular, the ran-
dom lead-time can be expressed as the product of the
expected demand during the selling season 4 and a
random variable that is independent of 4, that is, the
random lead-time can be expressed as

T = ¢,

wherein random variable ¢ has cdf ®(&) and pdf
¢(&). From basic statistics, we know that G;(t) =
O(t/2) and g;(t) = ¢t/ )/ 2.

The above modeling approach draws on Liu et al.
(2007), who consider a more general (i.e., a combi-
nation of multiplicative and additive) relationship
between T and ¢. For the most commonly used
G/M/1 queue, their general model reduces to our
multiplicative case. Therefore, our class of multipli-
cative lead-time distributions is general enough to
capture the settings in most studies. Moreover, our
class of multiplicative lead-time distributions pro-
vides a technical advantage where it is possible to
obtain a complete characterization of the optimal
decisions. We note that the linear relationship
between the expected lead-time and expected
demand is a key property that enables the expres-
sions for the optimal decisions and costs in our
model. And a linear relationship between lead-time
and demand arises, in approximation, in the classi-
cal M/M/1 system when system utilization is low
(e.g., follows from a Taylor series expansion of the
expected lead-time function).

3.3. Optimal Price

We now proceed to solve for the optimal price under
multiplicative lead-time distribution assumption. Let-
ting 0 = ® '(v) and substituting G, '(v) = & '(v)
/.= o0/ into Equation (8) yields

I = 1) = o).

Analogous to the optimal stocking factor in the
PSNP, the value of 6 can be defined as the optimal
timing factor. If s;,<0/p, for example, then the opti-
mal timing factor is zero and I" = 0.

The above result shows that I is increasing in the
mean demand 4. We now offer an interpretation to
see why this is so. It is commonly understood that
in the newsvendor problem, when mean and vari-
ance of uncertain demand increase, the optimal
order quantity also increases (provided the optimal
service level is reasonably high, which is usually
the case in practice). We observe that the mean
and variance of the lead-time distribution are E[T] =
JE[E] and VIT] = J2V[£], both of which are increas-
ing in 4. Therefore, it makes sense that I" is also
increasing in 4, due to the newsvendor-like trade-off
involved in determining the lead-time cost C(I, 4),
for example, quoting the optimal lead-time essen-
tially involves balancing the risks of underage vs.
overage costs.

Substituting I” into Equation (2) yields

Cl',2) = Iy /05,1 (61— t)qb(;f)d%
oo

= [h, /O (0 —y)p(y)dy + s / (v — 5)¢(y>dy]
o
= @4,

where ¢ =1 [y (5 — y)W)dy +s [;° (v — 5)p(y)dy,
which is the optimal lead-time cost per unit of
expected demand and is totally independent of 1.

The linearity of the optimal lead-time quotation I*
and the expected lead-time cost C{",4) in /, as a result
of our multiplicative lead-time distribution assump-
tion, greatly facilitates the derivation of the optimal /,
which allows us to derive some qualitative insights
from our model. The problem can be viewed as a
PSNP with a convex cost structure, that is, expected
cost is [c+ C(" DA+ z — A@)] + cAz), which is
quadratic in expected demand /. Furthermore, the
convex cost structure is unaffected by whether or not
the optimal quoted lead-time is zero or positive (¢ is
positive even if I = 0).



Wu, Kazaz, Webster, and Yang: Ordering, Pricing, and Lead-Time Quotation
582 Production and Operations Management 21(3), pp. 576-589, © 2011 Production and Operations Management Society

Substituting I” into 4, the expected demand is

(e N _ (P
i_<1+05> <1+05>”’

and substituting I" and C(I*, ) into Equation (7), we
get

(z,2)=(p—c— @A) (A—Q(z)) — (c+h)A(z) —sQ(z)

= [%(oci@(ﬂ)cqoﬂu}/l(hJFC)A(Z) (9)

p

The following lemma provides the optimal price.

- F(a—z—95/1)+s—c—<pi]ﬂ(2)-

LemMma 2. For a fixed z, the optimal A and the optimal
price are

=) =20+ %Q(z), (10)
P =p@E=p - (#) Q(2), (11)
o o—fc o= (1+60)2°
where 20 = 51105 1 o) and p° = — 5

The term 2 is the corresponding average demand
that maximizes W(p, I), the deterministic portion of
expected profit. Similarly, the term p° is the price that
maximizes F(p, I). We note that p” can be alternatively
expressed as

0o o+ fc
=25

The expression says that the optimal price is the
optimal price in a model without lead-time consider-
ations (e.g., 0 = 0) plus the unit lead-time cost.

Compared with past results that have looked at
price-time dependent demand, but have not included
the newsvendor ordering problem, the insights asso-
ciated with the expressions for I = I(1%), p”, and 2° are
consistent with those reported in earlier publications.
Palaka et al. (1998) assume the lead-time distribution
conforms to the M/M/1 model. They find that p° =
(a — 22 — 01°/p (i.e., when demand is deterministic,
the intercept of the demand function, called a in Pala-
ka et al., is &). Since I° = 1(2°) = 6,°, we have

+C(I, 2°).

o (a=2"=00)
p B )
confirming the selling price result of Palaka et al.

(1998). The expressions for [ and 2° in our article
vary from those presented in Palaka et al. (1998)

Table 1 Comparative Statics

Probability
Average Optimal quoted  of meeting quoted
demand (2% lead-time (/°) lead-time (v)

Price sensitivity (/) ! ) 1
Lead-time ! ! !

sensitivity (0)
Unit holding ! 1 !

cost (h)
Unit tardiness ! 1 T

cost (s)

because our study employs a different lead-time dis-
tribution model. Table 1 summarizes some of the
important comparative statics (a proof is provided
in Appendix S1). In the table, the symbol { means
either increasing or decreasing.

Note that our model corresponds to the non-bind-
ing service level constraint case in Palaka et al. (1998).
The results in Table 1 are consistent with their results
with one exception. The quoted lead-time in our
model affects the expected holding cost, and there-
fore, the probability of meeting quoted lead-time
decreases in the unit holding cost (e.g., so as to reduce
the fraction of orders held in inventory prior to ship-
ment). In the results of Palaka et al. (1998), however,
the unit holding cost does not have any impact on the
probability of meeting quoted lead-time due to the
assumption that the expected holding cost is not
dependent on quoted lead-time directly. Our result
seems to be more appealing, because intuitively one
would expect, as unit holding cost /; increases, a
shorter lead-time to be quoted in order to reduce the
chance of holding those completed products. We
draw additional comparisons with results from the
literature after characterizing the optimal stocking
decision in the next section.

3.4. Optimal Inventory Decision

Substituting 2" into Equation (9), the expected profit
function II(z, A(z), I(z)) becomes a function of the sin-
gle variable z as follows:

(z) = (p—c - C,2)(4 - Qz))
— (h+¢)A(z) — sQ(z)
1

(
[oc/)’c +65+ﬁ¢)<;f’+@>} (12)

X [;P — %] — (h+0)A(z) —5Q(2).

= =

2

Employing a similar approach presented in Pet-
ruzzi and Dada (1999), we characterize the optimal
solution in the following theorem.
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THEOREM 1. The optimal decision is to quote a lead-time
I" as stated in Lemma 1, and to stock q* ="+ 2" to sell
at the price p, where i and p" are specified in Lemma 2
and z" is determined as follows:

(@) If F(-) is an arbitrary distribution, then an exhaustive
search over all values of z in the region [A, B] will
determine z*, which maximizes Il(z, )(z), 1(z)).

(b) If F(-) is a distribution function satisfying the condition

dr(z)
dz

2r%(z) + >0, (13)

for all z in the region [A, Bl, where r(-) = f(-)/[1 —
F()] is the hazard rate (or failure rate), and the
following condition is met

N [0 — B+ A(1 + 06 + Bo)]
2p

then z" is the unique z in the region [A, B] that sat-
isfies the first-order condition dIl(z)/dz = 0, that is,

>0, (14

—(h+c¢)+[1 - Fz)]
o — fc— (1+ 05+ po)Q(z)
2

X |h+c+s+ (15)

=0.

Note that the condition 2r%(z) + dr(z)/dz > 0 is
weaker than the increasing failure rate condition (i.e.,
dr(z)/dz > 0), which is satisfied by many commonly
used distributions, for example, normal, uniform,
exponential (see Bagnoli and Bergstrom [2005] for a
more complete list).

An intuitive interpretation of the first-order condi-
tion specified in Equation (15) is as follows. Note that
it can be rewritten as

s+ o — fc— (14 00+ Po)2(z)]/(2p)
(h+c)+s+[a—pc—(1+05+ Bp)Q(z)]/(28)

F(z) =

which is the typical newsvendor critical fractile-like
solution, with overage cost & + ¢ and underage cost
s+ o — fc— A+ 00+ Bp)2Uz)]/2p). This is consis-
tent with our previous explanation of Equation (5)
where we note that underage cost is s +p — ¢ —
C(l, 7), because after substituting the optimal solu-
tions, we have

s+p—c—C(l,i):s+%
S+a—ﬁc—ﬂv(1ﬁ+95+ﬁ¢’) (16)
2P (1+05+ o))
- T .

Given the above interpretation, the physical
meaning of condition (14) is now immediate. By

noting the fact that €(z) is decreasing in z, and
Q(A) = —A >0, we know that condition (14) guar-
antees that the newsvendor underage cost is always
positive.

Note that the profit margin p — ¢ — C(I, 1) can be
simplified to [o — fc — (1 + 0 + p)A=2)1/(2p). Thus,
while condition (14) is technically correct (i.e., first-
order condition returns the maximum expected profit
given that the firm sells the product), we actually
require a slightly stronger condition

o — e+ A(l + 05+ Bo) > 0, (17)

to exclude the trivial case where the expected profit is
negative. We point out, however, that condition (17)
is satisfied by all reasonable parameter sets (including
all numerical examples in the next section).

Before concluding this section, we remark that
when 0 = h; = s; = 0 (i.e., when lead-time is not a fac-
tor), our problem reduces to the traditional PSNP
reviewed by Petruzzi and Dada (1999).

4. Managerial Implications

In this section, we discuss some managerial insights
implied by our modeling results, and relate them to
real-life examples. As stated earlier, a main contri-
bution of our article is that we bridge two streams
of existing literature, namely, the pricing and lead-
time quotation stream, and the newsvendor problem
with endogenous pricing stream. Compared to the
former, our problem has the additional dimension
of a stocking decision. Compared to the latter, our
problem is complicated by the additional lead-time
quotation decision, which affects the demand.
Therefore, in this section we compare our problem
and its results with the two closely related research
streams. We focus on understanding the effect of
demand uncertainty and that of lead-time quotation.
For the purpose of easy comparison, we assume
both conditions (13) and (17) hold, if not otherwise
specified, to ensure the uniqueness of the optimal
solutions.

4.1. The Effect of Demand Uncertainty

In this subsection, we explore the impact of loss L(z, p,
I) due to uncertain total demand on the optimal deci-
sions and the associated optimal expected profit.
Recall that the 2°, I°, and pO maximize the “determinis-
t(i)c” portion of expected profit \i(p, ). Let I1° = y(p°,
).

The following theorem claims that consideration of
L(z, p, D) in the optimization problem increases the
optimal values of the quoted lead-time and the result-
ing average demand, but decreases the optimal sell-
ing price and the expected profit.
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THEOREM 2 The following inequalities hold:

(@ 4 > 2
® >0
@ p <7’
(d I < 11°

To understand the above comparison, we first note
that price and lead-time are extra (i.e., in addition to
inventory) means to guard against demand risk,
which can be measured by its coefficient of variation
o/ 2. Therefore, in the presence of demand uncer-
tainty, it makes sense to price and quote lead-time in
such a way that the resulting average demand A
increases, to lower the demand risk. This explains
part (a) of Theorem 2.

It is easy to understand part (b) from a technical
perspective because we know I” = 5.". We now look
at an intuitive explanation. From a queuing perspec-
tive, the lead-time becomes stochastically larger when
the mean demand A becomes larger. As a result, a
longer lead-time should be quoted to reduce the pen-
alty cost due to late deliveries. At a more detailed and
technical level, when the mean demand / increases,
both the mean and variance of the lead-time distribu-
tion increase. Therefore, it is natural for I to be larger.
Note that the unit lead-time cost C(I, 1) = ¢/ is also
higher, as it is proportional to A. Thus, our results
indicate that in consideration of L(z, p, ]), it is optimal
to trade lead-time-related cost for reduced inventory
cost.

Keep in mind that demand is decreasing in both
price and iuoted lead-time. Now that I is Igrger, in
order for 4 to be larger, the optimal price p should
be smaller. It should decrease to the extent that the
decrease in demand caused by a longer promised
lead-time is more than offset. Note that the marginal
profitp — ¢ — C(, /) is reduced as a result.

As for the profit comparison, it is easy to under-
stand that the expected profit is lower when demand
uncertainty is present, due to the additional cost term
Lz, p, D).

The impact of demand uncertainty has interesting
implications. It suggests that customers with high
lead-time sensitivity but low price sensitivity benefit
from cooperating with the firm to eliminate (or
reduce) demand uncertainty. For example, coopera-
tion could take the form of advance purchase commit-
ment, which resolves the demand uncertainty. Given
the reduced demand uncertainty, the firm will set a
higher price but promise a shorter lead-time, leading
to a smaller average demand /. As the average service
rate of the system remains unchanged, this lower
average demand will in turn result in a stochastically
shorter lead-time, thus benefiting the lead-time sensi-
tive but price insensitive customers.

The impact of demand uncertainty on optimal deci-
sions and profit noted above adds a dimension to
interpretations from the PSNP literature. When lead-
time does not affect demand, corresponding to the
PSNP model, it is known that the introduction of
demand uncertainty in the form of an additive error
term causes the optimal price and profit to decrease,
and expected demand to increase. A managerial
insight is that there is a conflict of interest with respect
to the elimination of demand uncertainty; that is, it
benefits the firm (higher profit), but hurts the cus-
tomer (higher price). In our model, we find the same
directional effects with respect to price, profit, and
mean demand, but we also find that the optimal
quoted lead-time decreases with the elimination of
demand uncertainty. Thus, in contrast to PSNP, we
find that a segment of consumers (lead-time sensitive
but price insensitive) benefit from reduced demand
uncertainty. Thus, as noted above, there are potential
opportunities for the firm and customers to work
together to reduce demand uncertainty, which is an
insight that does not come out in traditional PSNP
models.

The essence of the above discussion is not lost in
the launch of the Xbox game console. When many
game fanatics who were eager to be among the first to
experience the product placed pre-orders, Microsoft
was able to take advantage of the reduced demand
uncertainty to price the product higher (the price
dropped £100 just 42 days after its initial launch in
the United Kingdom) and catered to the pre-orders
first (Europemedia 2002).

4.2. The Effect of Lead-time

In this subsection, we explore the effect of lead-time.
Specifically, we study how the optimal price, stocking
decision, the resulting average demand, and the asso-
ciated expected profit are affected by the existence
and magnitude of lead-time. To examine these rela-
tionships at a detailed level, we require a specific pdf
for the random variable &. (Recall that random lead-
time is T = /&) We assume that ¢ is a power function
distribution random variable with support [0, pl. The
cdf and pdf are given by

o) = (p) , (18)
B w—1
$(x) = ’; , (19)

respectively, where both the shape parameter w and
the scale parameter p are positive. The scale parame-
ter p influences the maximum time to complete one
job in the system. Therefore, the cdf and pdf of the
lead-time T are
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B
e

respectively. In this case, p/i represents the longest
possible lead-time when mean demand is 4 and 1/p
is analogous to the mean service rate in the queuing
system. As a result, the power function lead-time
distribution behaves, in spirit, similarly to the M/
M/1 lead-time distribution—it is a function of the
mean demand and service rate parameters.

The shape parameter o plays a critical role in both
the definition of the power distribution function and
the ensuing analytical results. Figure 2 provides
exemplary forms of the pdf of the power function dis-
tribution (where the upper support pil is 1) with
different values of the shape parameter w.

Although the power function distribution is not
derived from a specific model of a production system,
and thus has the shortcoming of being an approxima-
tion, we believe this assumption is reasonable because
of its flexibility and ability to capture the essence of
lead-time in practical situations. The power function
distribution has the following advantages. First, it is
bounded, reflecting the reality that infinite lead-time
is not possible. Second, it is consistent with the results
in traditional queuing theory in the sense that the
lead-time distribution can be described as a function
of the mean demand rate and service rate. Third, it is
applicable to a variety of settings. It can not only
mimic the exponential distribution when M/M/1 is
an appropriate approximation of reality but also cap-
tures features beyond M/M/1’s capability, for exam-
ple, lead-time is more likely to be long than short.
Fourth, we find the approximation works well in
numerical tests. For example, we let ¢; be a geometric
random variable so that the total demand during the
season is a negative binomial random variable, which

Figure 2 Probability Density Function of Power Function Distribution

5

is commonly used to model retail demand and has
proven to fit empirical data well (Smith and Agrawal
2000). The time to customize the product is an expo-
nential random variable. Similar to the approximation
model in Liu et al. (2007), we find that the approxima-
tion error tends to decrease in the critical fractile v.
For instance, when the critical fractile is above 85%,
the maximum error (i.e., maximum difference
between the observed cdf and the power function dis-
tribution cdf) is <56%.

Given that power function distribution random
variable with cdf and pdf defined in Equations (18)
and (19), one can verify that the optimal timing factor
0 = 7p, and the optimal lead-time cost per unit of
expected demand ¢ =r1np, where 1= v/ and
n= [t +5("M +o-—1-10)]/(0+1).

We first analyze a simpler variant of the problem
where we eliminate the demand uncertainty (e.g.,
random lead-time is solely a consequence of random
service time).

4.2.1. The Case Without Demand Uncertainty.
We begin with an observation that the optimal lead-
time is closely related to the scale parameter, p, of the
lead-time distribution. Recall that in the absence of
demand uncertainty, the optimal lead-time is deter-
mined by ©=1p’ = («— fc)tp/[2(1 + Otp + Brp)],
which can be easily verified to be increasing in p.
Therefore, in this subsection, to study the effect of
lead-time on the optimal decisions and the expected
profit, it suffices to analyze the influence of p, which
corresponds to the varying levels of lead-time. Recall
that p can be interpreted as the average time to serve a
customer. As its value increases, both the mean and
the variance of the lead-time distribution increase.
Thus, it is intuitive to quote a longer lead-time as p
increases.

In the special case where p = 0, the optimal lead-
time is 0. This actually becomes the make-to-stock
situation where products are readily available when
orders arrive. We point out that the power function
distribution requires the scale parameter p to be
positive. However, we can simply redefine its pdf as
constant at 0 when p = 0 to make it consistent for all
non-negative p-values.

The following theorem states the effect of lead-time
in the absence of demand uncertainty.

THEOREM 3. When p increases so that it is optimal to
quote a longer lead-time, the optimal price increases,
resulting in a lower average demand. In addition, the
associated optimal expected profit decreases, that is, Op°/
dp > 0,0.°/0p < 0, and d11°/dp < 0.

To see why the optimal price is increasing in p,
note that the profit margin p° — ¢ — C(I°, °) should
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remain constant at (« — fic)/2f (see the proof of Theo-
rem 3 for the expression of 119 in order for the
expected profit to be maximized. This observation
suggests that the core interaction between the pricing
and lead-time decisions is to maintain the profit mar-
gin. Since C(I°, 2%) = 5p/° is increasing in p, the opti-
mal price should also be increasing in p to hold the
profit margin unchanged.

As both price and lead-time increase as a result of
increased p, the mean demand decreases, for example,
the customer base shrinks. Not surprisingly, the
expected profit also decreases (the number of buying
customers is declining, while the profit margin
remains constant).

One might expect price and lead-time to play
substitutable roles in shaping customers’ utilities as
capacity increases; for example, if a higher price is
charged, a shorter lead-time is quoted to maintain
customer utilities and not turn customers away, and
vice versa. On further thought, however, our results
stated above make sense if we look at it from the
following angle. If the firm adopts some advanced
manufacturing technology to reduce the processing
time p, it can then afford to quote a shorter lead-time
and lower price to attract more demand without over-
loading its capacity.

The positive relationship between p* and p derives
from a fundamental property of deterministic pricing
models known as the Lerner index relation: the opti-
mal profit margin as a percent of selling price is equal
to the multiplicative inverse of the price-elasticity of
demand (Lerner 1934). From this property, it follows
that the optimal price is increasing in unit cost for any
demand function with price-elasticity that is non-
decreasing in price (e.g., as is the case for linear
demand, iso-elastic demand, among others). Any
such model in which an increase in service time forces
an increase in the quoted lead-time also causes an
increase in unit cost (i.e., through higher lead-time
cost) and, by the Lerner index relation, an increase in
the optimal price.

Past research on the PSNP model has shown that
the optimal price under an additive form of demand
uncertainty is lower than the optimal price for deter-
ministic demand (Petruzzi and Dada 1999). The result
in Theorem 2, which shows that optimal price
decreases as demand uncertainty is introduced, is
consistent with the PSNP model predictions. How-
ever, a result in Theorem 3 hints at meaningful differ-
ences in the effect of lead-time vs. demand
uncertainty on optimal price. In particular, optimal
price is increasing as the mean and standard devia-
tion of lead-time increase, that is, 6;90/6,0 > 0. To prove
that the directional effect of the standard deviation of
lead-time continues to hold when mean lead-time is
held constant, we use a mean-preserving transforma-

tion of the lead-time random variable T that was origi-
nally introduced in Gerchak and Mossman (1992):

Ty = kT + (1 — K)E[T] = kT + (1 — k) wL_HpA (20)

where k > 0. Accordingly, E[Ty] = E[T] and V[T,] =
kK*>V[T]. In this transformation, it can be seen that the
variance is increasing with the value of k while
the mean is kept constant. Using T} in place of T in
the analysis above, we see that the optimal price is
increasing in lead-time uncertainty (see Equations
(SA1)-(SA4) in Appendix S1). The effect of increasing
lead-time uncertainty on optimal price is similar to
the effect of increasing demand uncertainty on opti-
mal price in the PSNP model with the multiplicative
form of random demand (Petruzzi and Dada 1999).
The intuition behind this similarity is that the stan-
dard deviation of the random variable (lead-time or
demand) is increasing in the mean demand, which
relative to the additive form of random demand
where there is no linkage between the mean and stan-
dard deviation of demand, introduces pressure to
reduce mean demand, for example, by increasing
price. In sum, in our model, while lead-time uncer-
tainty leads to an increase in the optimal selling price,
the additive form of demand uncertainty causes a
reduction in the optimal selling price. The conse-
quence of this result is that the inclusion of lead-time
uncertainty in the PSNP model cannot be simply
treated as a further increase in demand uncertainty.

422 The Case with Demand Uncertainty. We
now investigate the effect of lead-time in the presence
of demand uncertainty. As in the case of deterministic
demand, we establish the relationship between the
optimal lead-time and the parameter p to facilitate
our discussion.

LemmMa 3. The optimal stocking factor z° is decreasing
in p, and the optimal lead-time I is increasing in p, that
is, 0z"/3p < 0, and " /dp > 0.

As in the deterministic demand case, the optimal
lead-time [” is increasing in p, and the interpretation is
the same. From the first-order condition specified in
Equation (15), we can see that an increase in p causes
a decrease in the underage cost, whereas the overage
cost is unaffected. Therefore, the optimal stocking fac-
tor z" is decreasing in p.

The effect of lead-time on the optimal expected
profit is stated in the following theorem.

THEOREM 4. In the presence of demand uncertainty,
the optimal expected profit is decreasing in p, that is,
oIl /dp < 0.
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While it is easy to understand the optimal expected
profit decreases in p, it is not easy to see how the aver-
age demand /" and optimal price p* change with p, as
the comparative statics analysis is not tractable. We
conducted extensive numerical experiments and
found that as p increases, the average demand always
decreases, but the optimal price p* may either increase
or decrease. A representative example is reported
below in Figure 3. The parameters used in this exam-
ple are =530, f=0=5 ¢c=50, h=h= 05
s =5 =2,w =1,and ¢is assumed to follow a negative
binomial distribution with parameters 5 and 0.2.

To see why the average demand 4~ decreases in p,
recall that 1/p can be interpreted as the mean service
rate of the system. As p increases (or 1/p decreases), it
is natural to induce a smaller demand rate (average
demand ") to avoid potentially high tardiness cost.
As a result, a high lead-time related cost C(l, 1) can be
avoided, which is desirable because the lead-time
related cost erodes the profit margin (recall that the
net profit margin is given by p — ¢ — C(l, 2)).

Unlike the deterministic demand case, the optimal
profit margin p — ¢ — C(I, ), which can be rewritten
as [x — fc — (1 + O1p + Pyp)Q=2)1/(2B), is not inde-
pendent of p when demand is random. Instead, it
now can be verified to be decreasing in p. Therefore, it
is hard to predict how the optimal price p" is affected
by p even if C(l, 1) increases in p. Our numerical stud-
ies indicate that p* increases in p in most cases, but
there are also circumstances in which p” decreases in
p. While it is unclear what conditions exactly charac-
terize the impact of p, a general observation is that
when p is relatively small, p” increases in p. When p is
relatively large, p* can be decreasing. A potential rea-
son is that when p is relatively small, the service rate
1/p is still large enough to allow for a relatively large
average demand, so it is more important to maintain
the profit margin. Although the profit margin always
decreases in p, an increasing price can offset the erod-
ing margin partially. When p is relatively large, only a

Figure 3 Impact of p on Average Demand (") and Optimal Price
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small number of customers can be served. An increase
in p then further shrinks the customer base. Conse-
quently, it is essential for the company to lower price
in order to retain customers.

When demand is deterministic (i.e., ¢ = 0), we find
that optimal price and quoted lead-time are increasing
in the mean service time (in spirit) p, whereas profit is
decreasing in p. This result is consistent with the pric-
ing and lead-time quotation literature (e.g., similar
result is implied by the centralized solution of Liu et al.
2007). A managerial implication, which comes from
the existing literature, is that both the firm and custom-
ers benefit from reductions in service time (ignoring
the sunk cost of reducing service time). It can be
observed that the coefficient of variation of lead-time
distribution is constant in both M/M/1 systems and
our model, for a given w. This might help explain the
similar effects of increasing mean service time that we
see in our model and the M/M/1 models from the
literature. However, we find that this managerial
implication regarding the impact of the mean service
time p on the optimal price and quoted lead-time from
past research may be disqualified when ¢ > 0. While
the firm always benefits from reductions in p, there are
instances where price will increase as p is reduced,
which can go against the interests of price-sensitive
consumers. In other words, for a product with a small
market, some customers can actually benefit, for exam-
ple, those who care a lot about price but not about lead-
time, as the firm’s production capabilities diminish.

5. Conclusion

We formulate a price-setting newsvendor model with
price and lead-time-dependent demand. The model
combines and extends models in the price-setting
newsvendor literature and the pricing and lead-time
quotation literature. We derive expressions for the
optimal quantity, price, and quoted lead-time. By
examining these expressions and by conducting
numerical analyses, we expose relationships between
problem parameters, optimal decisions, and optimal
expected profit. We show that while lead-time uncer-
tainty leads to an increase in the optimal selling price,
the demand uncertainty with an additive random
error term causes a decrease in its value. As a result,
the inclusion of lead-time uncertainty cannot be treat-
ed as simply an increased level of demand uncer-
tainty, necessitating the type of analysis provided in
this article.

We find that in settings with endogenous and lead-
time-dependent demand, both the firm and some
customers (i.e., lead-time sensitive and price insensi-
tive) benefit from lower demand uncertainty, thus
creating greater opportunities for collaborative efforts
to reduce demand uncertainty. This is in contrast to
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settings where lead-time is exogenous, as in the case
of the traditional PSNP, for example, the firm benefits
with higher profit whereas the consumer suffers from
higher prices.

We examine how demand uncertainty influences
the impact of capacity on the firm’s optimal decisions.
Consistent with literature, we find that, in the absence
of demand uncertainty, a reduction in capacity causes
an increase in the optimal selling price and quoted
lead-time, hurting all consumers and the firm. How-
ever, when demand uncertainty is incorporated into
the problem, the same notion does not apply consis-
tently. Indeed, for a product with a small market size,
we find that a reduction in capacity can cause the firm
to decrease its optimal selling price (rather than
increasing it) in order to retain some of its customer
base. As a result, at least one segment of consumers
(who are highly sensitive to price but less so to quoted
lead-time) can benefit from a reduction in capacity.

On the technical side, our study utilizes two trans-
formations of variables to turn an otherwise difficult
to solve multivariate optimization problem into a
tractable sequential optimization problem. These
transformations enable us to determine the optimal
solutions for all decision variables: order quantity,
selling price, and the quoted lead-time. We introduce
a general multiplicative lead-time model. The model
is general enough to capture a majority of the settings
described in literature and it enables us to obtain a
complete characterization of the optimal decisions.
For detailed investigation of lead-time effects, we use
a power function distribution. This distribution
accommodates real-world settings where work is
more likely to get completed near the end of the
quoted lead-time window, as well as settings where
the reverse applies. Much of the pricing and lead-time
quotation literature draws on an M/M/1 model
where work is more likely to get completed near the
beginning of the quoted lead-time window.

We suggest two issues for future research that stem
from our assumptions. First, our analysis is based on
a linear demand function with an additive form of
demand uncertainty. Other demand functions (e.g.,
isoelastic) and forms of demand uncertainty (e.g.,
multiplicative) are worthy of investigation. Second,
our model assumes a tardiness (penalty) cost that is
independent of the selling price. While it is difficult to
address the relationship between the tardiness cost
and the selling price in our modeling framework, it
can be investigated in a setting which considers multi-
ple demand classes.
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