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This paper studies production planning with random yield and demand. It is a departure from previousstudies of random yield in that it defines the sale price and the purchasing cost as exogenous and increasing
with decreasing yield. While this behavior can be observed in various industries (e.g., citrus), the paper focuses
on the olive oil industry as its application. Production of olive oil is a challenging business as olives grow every
other year; thus, a risky investment is involved. A new practice among olive oil producers involves leasing
farm space from farmers to grow olives. When the yield of olives is low (because of weather, disease, etc.),
the oil producer gets a second chance to buy olives from other farmers at a unit cost varying with the yield.
In this case, the sale price of olive oil increases in the market place because of the reduced supply. When the
yield is high, the company uses some of its olives for olive oil production and some are salvaged. After olives
are pressed and olive oil is produced, the company experiences an uncertain demand. The paper makes four
contributions: First, it is shown that the objective function is concave in the amount of farm space leased, so that
the first-order conditions provide the globally optimal solution. Second, it illustrates how the total production of
olive oil changes with the yield. Third, it proves that the optimal amount of farm space leased decreases under
the presence of a second (and reliable) source of supply. Finally, unlike traditional yield papers, the fourth result
shows that increased yield variance does not necessarily increase the optimal amount of farm space to be leased
when there is a second chance to obtain supplies.

Key words : production planning; yield and demand uncertainty; stochastic programming; yield-dependent
price; yield-dependent cost; olive oil production

History : Received: October 4, 2002; accepted: June 30, 2003. This paper was with the author 2 12 months for 3
revisions.

1. Introduction
This paper investigates production planning decisions
under yield and demand uncertainty. The modeling
approach of this study differs from traditional ran-
dom yield papers because it captures a unique per-
spective on how the sale price and some of the costs
are affected by the realized yield. More specifically,
the sale price and the purchasing cost, while being
exogenous, are inversely impacted with the realized
yield because they both increase with decreasing
yield. This relationship can be observed in various
industries such as the production of olive oil, orange
juice, timber, and wood, etc. Therefore, the findings
of this paper extend to a broad range of applications.
We focus on olive oil production because it presents

several challenging decisions involving yield and
demand uncertainty. Unlike many agricultural prod-
ucts (e.g., fruits and vegetables), the growing and

selling seasons of olives are longer. Olive trees are
unique because they bear fruit every other year, and
are therefore a riskier investment than other crops. At
the end of a growing season, farmers collect the olive
crop (in late November and early December) and sell
them to olive oil producers. In less than 48 hours,
they are pressed to obtain olive oil. At this point,
the purchasing cost of olives changes depending on
the crop yield in the region. Weather conditions, dis-
eases, insects, etc. can influence the yield. As the yield
varies, so does the purchasing cost of the olives. The
purchasing cost is not the only parameter influenced
by such variations. The sale price of the final prod-
uct, olive oil, is also affected. In Turkey, for exam-
ple, the vast majority of olives for olive oil are grown
in a small geographic area known as Edremit Bay.
Because the growers are in close proximity to each
other, they share a similar yield uncertainty. A low
yield for one implies a low yield for others. With over
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70% of Turkey’s naturally pressed olive oil coming
from the same region, the yield has an impact on
the entire country. For example, when the yield was
low in 1997 (by 40%) and 1999 (by 30%) compared to
2001, the average sale price was 68% and 45% higher,
respectively.1 Therefore, a low yield increases the sale
price of olive oil.
A recent practice growing in popularity is for olive

oil producers to lease farm space from growers—the
lease is usually measured by the number of olive
trees. While the lease is for 2 years (growing season),
the leased trees are mature and at least 10 years old.
This method enables the oil producing company to
have better control over the growth of olives and the
quality of the crop. The oil producer incurs a growing
cost of olives (which includes pruning, stem cutting,
fertilization, weed control, and insect and disease
management) in the leased farm space. The oil pro-
ducer has access to credits and financial instruments
at better rates than the farmers. Due to such financial
efficiencies and economies of scale (most farmers do
not have a large amount of land), the cost of grow-
ing olives for the oil producer is typically less than
it is for the farmers. While the oil producer incurs a
lower cost by growing their own olives as opposed to
purchasing them from farmers, the producer has to
deal with the risk of yield uncertainty. However, the
producer can mitigate this risk through the option of
having a second chance to buy extra olives from other
growers after the crop yield is observed. It should be
noted here that the oil producer cannot diversify the
yield risk by leasing land from various farmers in the
same region—they all have similar yield.2 However,
leasing is intended to reduce the future purchasing
costs of olives, especially when the yield is low. There-
fore, the question for the company is what makes
the leasing option more profitable than the traditional

1 This data was provided by the Ayvalik Chamber of Commerce,
Turkey.
2 In general, geographic diversification requires transporting olives
from a different region. Because olives need to be pressed in less
than 48 hours after collection, complex logistical operations are nec-
essary and costs and the quality risk increase. Thus, geographic
diversification requires locating a factory in every growing region,
and increases capital expenditures. Furthermore, both the kind and
quality of olives grown in other parts of Turkey do not match those
of Edremit Bay, so the oil producers are not interested in leasing
land in other regions of the country.

practice of producing olive oil with solely purchased
olives. This paper identifies the conditions that lead
to a profitable leasing alternative.3

In this study a two-stage decision-making process is
considered for a representative olive oil producer. The
growing season of olives is the first stage and the selling
of olive oil is the second stage. Each stage is approxi-
mately two years in length. In Stage 1, the oil producer
decides on the size of the olive farm to be leased. After
the crop is collected and the yield is observed, the pro-
ducer decides how much of the realized yield should
be used for the production of olive oil and, if neces-
sary, how much to purchase from other farmers. If the
crop yield from the leased farm is low, then the pro-
ducer firm has to decide whether it should purchase
more olives fromother farmers, and if so, the amount. If
the realized yield is high, however, the oil producer has
to choose the amount of olives to be pressed for olive
oil production, and the rest of the yield is salvaged at a
low return. The objective in the second stage is to max-
imize expected profit under demand uncertainty. We
alsoneedtoemphasize thatolivesnotusedforoilarenot
packaged for sale. This is because there are two kinds of
olives: one is for olive oil (the seed is significantly larger,
and its flesh is rich in oil) and the other is for packaged
(e.g., canned) olives that have a different texture, taste,
and appearance. Therefore, olives that are not pressed
for oil can be sold only at salvage value without cre-
ating a secondary market. After olive oil is produced,
the demand is observed and revenues are collected. The
price of olive oil is determined in the overall market,
depending on the yield. However, because all olive oil
producersoperate innearly identical supplyconditions,
an individual producer is assumed to face an estimated
demandas itsmarket share remains constant regardless
of the total supply and demand in the overall market.
Therefore, the price received by an olive oil producer is
assumed to be inversely related to the observed olive
yield.

3 One can argue that the oil producer should purchase the land
(rather than leasing) for its long-term benefits. There are three rea-
sons why this does not occur. The first one is cultural: People who
own olive trees perceive the land as their most valuable asset (a
guarantee for the future). The leasing also allows them to work dif-
ferent jobs. The second reason is the higher land price because of
the proximity to a shoreline. The third reason is a subsidy provided
by the World Bank that pays farmers between 17¢ and 21¢ per tree
to keep the ownership of their land.
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Unlike manufacturing products, olive oil produc-
ers do not carry inventory from one selling season to
the other. The decision to not hold olive oil inven-
tory is primarily based on maintaining the reputation
of the quality of the oil. The process of combining
aged oil with new oil is referred to as “blending.”
Although blending is practiced by bottling companies
in some countries, it presents a high risk for oil pro-
ducers because the aged olive oil naturally carries a
higher acidic content than the newly pressed one. Sal-
vaging unsold olive oil (with no carrying of inven-
tory) forces the oil producer to solve this problem
every season. As a result, the formulation considered
here assumes a single period (two years). Although
the salvage revenue (from leftover olive oil) can also
change with the realized yield, an exogenous and con-
stant value is assumed in the formulation. However,
the main conclusions would remain under a variable
price scenario.
The model incorporates an inverse relationship

between the realized yield, the purchasing cost of
olives, and the sale price of olive oil, but it makes no
assumption regarding the form of this relationship.
Furthermore, no assumption is made regarding the
distribution of random yield and demand. Thus, the
results hold under quite general conditions.
The paper makes four contributions. First, it shows

that the objective function, maximizing expected
profit, is concave in the amount of farm space leased,
so that a global optimal solution can be obtained
from the first-order conditions. The optimal solution
depends on the yield distribution and how the sale
price and the purchasing cost change with respect to
(w.r.t.) the yield. Second, it offers a detailed discus-
sion on how the total amount of olive oil produc-
tion changes with the yield. The conditions on various
kinds of supply behavior (increasing or decreasing)
provide managerial insight. It also demonstrates the
implications of having a second source of supply.
Third, it proves that the optimal amount of farm space
to be leased decreases under the presence of a sec-
ond chance. It is commonly reported in the random
yield literature that higher yield variance increases
the optimal amount of initial production. In contrast,
this study shows that a higher yield variance does
not necessarily lead to an increased amount of leased
farm space when the oil producer can purchase olives

from other farmers (even at a higher cost). The sec-
ond chance allows the producer to obtain more sup-
plies with a smaller amount of farm space leased. The
paper also presents an empirical application to sub-
stantiate these theoretical findings.
The problem of random yield and demand has

received considerable attention in the literature. An
extensive review of production and inventory prob-
lems under yield uncertainty can be found in Yano
and Lee (1995). Gerchak et al. (1988), Gerchak (1992),
Henig and Gerchak (1990), Henig and Levin (1992),
and Shih (1980) consider models with production
capabilities in single and multiple periods. Gerchak
et al. (1988) and Henig and Gerchak (1990) find that
the optimal production quantity does not depend on
the yield distribution in a periodic review inventory
problem. The study by Henig and Levin (1992) deter-
mines the optimal order quantity with the choice of
the vendor and the quantity to be delivered to cus-
tomers. Hsu and Bassok (1999) find the amount of
optimal production with the availability of down-
ward substitution. Bollapragada and Morton (1999)
provide efficient myopic heuristics for periodic review
inventory problems. Random yield and demand are
also considered in assembly lines (see Gerchak et al.
1994; Gurnani et al. 1996, 2000) and in N -stage serial
systems (see Lee and Yano 1988). Additional liter-
ature on random yield and demand can be found
in papers that study multiple lot sizing in make-to-
order systems. An extensive review of these problems
is provided in Grosfeld-Nir and Gerchak (forthcom-
ing). The model developed in this study differs from
these studies by incorporating a relationship between
the realized yield, purchasing cost, and sale price.
When the yield is observed, the second stage of the
model becomes a newsboy problem with an uncer-
tain demand (Hadley and Whitin 1963). The newsboy
problem also presents a different feature by incorpo-
rating a secondary source (i.e., the option to purchase
more olives from other farmers). The second oppor-
tunity to obtain olives resembles the setting in Jones
et al. (2001). In their paper, the hybrid seed corn
producer gets a second chance for production in a
different region of the world and experiences yield
uncertainty. Our problem differs from Jones et al.
(2001) in two ways: (1) the sale price and the pur-
chasing cost are functions of the realized yield and
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(2) when the olive oil producer purchases olives from
other farmers, she does not experience another yield
uncertainty. Finally, the demand and its distribution
are affected by a variable price scheme in the present
formulation.
The paper is organized in the following order: §2

details the description of the problem and presents
the model for production planning under yield and
demand uncertainty with the presence of yield-
dependent cost and price. In §3, a structural analysis
explores analytical results for both the growing stage
and the sale stage of the problem. Section 4 presents an
empirical application by defining a specific relation-
ship that describes how the purchasing cost of olives
and the sale price of olive oil change with the real-
ized yield. Conclusions and managerial insights are
presented in §5 along with future research directions.

2. The Problem Definition and
the Model

This section describes the details of the problem and
presents a mathematical model that features random
yield and demand with yield-dependent cost and
price. Because olive trees are productive once every
two years, an olive oil producer’s timeline can be
divided into two stages as shown in Figure 1. The
first two years comprise the growing season and cor-
respond to the first stage of the model. In this stage,
the producer decides the number of olive trees to be
leased from farmers. At the end of the growing season
(Stage 1), the producer collects olives and observes the
realized yield. Stage 2 marks the time when the pro-
ducer faces several decisions. If the yield is low, the
producer processes all of the realized yield for olive
oil production. If the yield is insufficient to produce
the most profitable amount of olive oil, the producer
may purchase more olives from other farmers at a
relatively higher cost than its own. As a result, the
producer determines the total amount of olives to be
pressed for olive oil—including the internally grown
and purchased olives. However, if the yield is high,
then the producer does not purchase olives, and per-
haps does not even process its entire yield. Instead,
the producer can sell some of the olives at a salvage
value. Therefore, at the beginning of the second stage,
the producer decides on the amount of olive oil to be

Figure 1 The Natural Sequence of Events on a Timeline

0 2 4
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farm space 
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and the 
realized 
demand

produced and sold in the market. During this two-
year period, the producer faces an uncertain demand
for his product.
We first present a two-stage stochastic program-

ming model for the olive oil production planning
problem under yield and demand uncertainty. We use
the following notation in our formulation:
u: a random variable representing yield as the frac-

tion of the amount produced, Q (Qu is the number of
olives realized after leasing Q units of echelon farm
space, e.g., olive trees).
g�u�: probability density function (pdf) of ran-

dom yield parameter, u, on a support [0�B] where
0<B ≤ 1.
c1: unit cost of leasing trees (echelon land for each

unit of olive oil) for growing olives (includes main-
taining the land and collecting olives at the end of the
growing season).
c2�u�: unit cost of purchasing (echelon) olives (from

other olive growers) after olives are collected; c2�u�
is continuous and is a decreasing function of u, and
c2�u= B� > c1.
cp: unit cost of processing olives to produce

olive oil.
h1: unit revenue of salvaging (echelon) olives with-

out processing for olive oil production, h1 < c1.
h2: unit revenue of salvaging olive oil at the end of

the selling season, h1 <h2 < c2�u= B�; h2 <h1+ cp.
b: unit penalty cost for unsatisfied demand of

olive oil.
p�u�: unit sale price of olive oil; p�u� is continuous

and is a decreasing function of u; p�u� > c2�u� for all
u values, and p�u= B� > c1+ cp > h2.
D�p�u��: demand function when the price of olive

oil is p�u�.
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Suppose that the firm faces a demand that is a func-
tion of the price of olive oil, p�u�, which in turn is a
decreasing function of the realized yield. We use the
following expression:

D�p�u��=K−�p�u�+ � (1)

where K is the expected demand for olive oil if the
price were set to zero (K > 0), � is the rate that
demand for olive oil decreases per unit increase in
price (� > 0), and � is the random error term. It is
assumed that � is independent of the price level and
represents the noise around expected demand when
price is set to p�u�. We assume that � is distributed
according to f ���, the pdf of the random error term,
with a mean of zero on a support �−A1�A2� where A1
and A2 > 0. F ��� is defined as the cumulative density
function (cdf) of the random error term and assumed
to be continuous, invertible, and twice-differentiable.
We also assume that K−�p�u�−A1 > 0, ensuring that
the demand for olive oil is always positive even when
the yield is zero and the sale price of olive oil in the
market is set to its highest level. It should be noted
here that the expected demand for a given yield u
decreases with increasing prices, i.e., E��D�p�u�� � u�=
K − �p�u�. Thus, the demand variance does not
change w.r.t. the sale price for a given u. Furthermore,
for the same u, the demand coefficient of variation
increases in the price.4 Also note that no assumption
has been made regarding the mean and variance of
the overall demand function.

Stage 1 Decision Variables
Q: amount of (echelon) olive trees (for the target

amount of olive oil) that the oil producer leases in
order to grow olives.

Stage 2 Decision Variables
q1: amount of olive oil produced from olives grown

by the producer (equivalently, this is equal to the ech-

4 Alternatively, we could use a functional form such as D�p�u�� =
Kp�u�−��, K > 0 and � > 1, where demand is multiplied by an
error term. In this case, while the variance of demand would vary
with price, the demand coefficient of variation would remain con-
stant and independent of the price. A more general form of the
demand function is D�p�u���� where �D�p�u����/�p�u� < 0 and
�D�p�u����/�� > 0. Although not presented here, the analytical
results (e.g., the concavity of the objective function in the amount
of farm space leased) do not change when this general demand
function is used.

elon amount of internally grown olives pressed for
olive oil), q1 ≤Qu.
q2: amount of olive oil produced from the olives

purchased from other growers (equivalently, this vari-
able can be interpreted as the echelon amount of
olives that need to be purchased from other farmers).
It should be noted here that while Q represents the

number of olive trees leased for growing olives, q1
and q2 are defined as the amount of olive oil produced
from internally grown and purchased olives, respec-
tively. q1 and q2 are also equal to the echelon amount
of olives that will be converted to olive oil.5 We next
present the model which uses the above notation.

The Model
The second-stage problem maximizes the expected

revenues from the sale of olive oil under demand
uncertainty. Given the realized yield of Qu units of
olives, this stage determines the optimal amount of
olive oil to be produced from internally grown olives
�q1� and from purchased olives �q2�. The sum �q1+ q2�
gives the total amount of olive oil production. It
should be noted that second stage revenue depends
on the random demand level. The expected second-
stage return function, E����q1� q2 �Q�u��, can be writ-
ten as follows:

E����q1�q2 �Q�u��
=−c2�u�q2−cp�q1+q2�+h1�Qu−q1�+

+
∫ �q1+q2�−�K−�p�u��

−A1

[
p�u��K−�p�u�+��+h2��q1+q2�

−�K−�p�u�+���]f ���d�
+
∫ A2

�q1+q2�−�K−�p�u��

[
p�u��q1+q2�−b��K−�p�u�+��

−�q1+q2��
]
f ���d�� (2)

The first term in the right-hand side (RHS), c2�u�q2, is
the purchasing cost of echelon olives from other grow-
ers for the production of q2 units of olive oil. The sec-
ond term, cp�q1 + q2�, is the processing cost of olives

5 There is a maximum amount of olives that a tree can produce
(about 200 kilograms). Similarly, there is a conversion rate for the
amount of olives needed per liter of olive oil—this ratio is typi-
cally five kilograms of olives per liter of olive oil. These conversion
rates are omitted in the discussion for simplicity. Instead, the cost
parameters are adjusted to reflect the role of these parameters.
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to press a total of �q1+ q2� units of olive oil. The term
h1�Qu−q1�+ is the salvage revenue obtained from left-
over olives that are not used for oil production. When
the demand is less than or equal to the total amount
of olive oil production, i.e., K−�p�u�+�≤ q1+ q2, the
second-stage return function, ��q1� q2 �Q�u�, includes
the revenue from selling D�p�u�� units at price p�u�. In
this case, the unsold olive oil, q1+ q2−D�p�u��, is sal-
vaged at a unit value of h2. Otherwise, when the real-
ized demand exceeds the total amount of olive oil pro-
duced (i.e., K − �p�u�+ � > q1 + q2), the second-stage
return function includes the revenue from selling only
q1+ q2 units of olive oil at price p�u�. In this case, each
unit of unsatisfied demand, D�p�u��− �q1+ q2�, incurs
a penalty cost of b. The resulting second-stage opti-
mization model can then be expressed as

PA�Q�u�=max
�q1� q2�

E����q1� q2 �Q�u�� (3)

s�t� q1 ≤Qu
q1� q2 ≥ 0 (4)

where Q units are planned in the first stage and u%
of it is realized. Note that h1�Qu − q1�+ in (2) can
be replaced with h1�Qu − q1� because constraint (4)
ensures that the amount of olive oil produced from
internally grown olives cannot exceed the realized
yield in the first stage.
Stage 1 maximizes the expected profit from leas-

ing Q units of olive trees, E� �Q��, which is equal
to the expected value of the second-stage profit over
yield uncertainty, Eu�PA�Q�u��, less the cost of grow-
ing olives in the leased farm space, c1Q.

max
Q

E� �Q��=−c1Q+Eu�PA�Q�u�� (5)

s.t. Q≥ 0�

3. The Analysis
The purpose in this section is to show that the objec-
tive function in Stage 1, E� �Q��, is a concave function
of the amount of farm space leased, Q. To accomplish
this, we first derive structural results for the optimal
policy in the second stage and use it to construct a
similar analysis for the first stage.

3.1. The Structural Analysis of the Second Stage
This section derives the optimal policies for the
amount of olive oil production (both from internally
grown and purchased olives) and the conditions that
lead to them. The proofs of all the propositions stated
below can be found in the Appendix.

Proposition 1. For any realized yield, u, and the first-
stage decision Q, the maximand of E����q1� q2 � Q�u��
defined in (3) is concave in q1 and q2.

Next, two special cases are considered. The first
case corresponds to the traditional practice of olive
oil producers when they do not lease farm space.
In this case, Q is equal to zero; therefore q1 is also
zero, and the producer needs to purchase olives from
other farmers to produce q2 units of olive oil. These
olives are purchased at a cost of c2�u� for every q2
units of olive oil, and thus are still subject to a cost
varying with the realized yield. In the second case,
the producer is not allowed to purchase olives from
other farmers. The analysis of these two cases pro-
vides insight into both the structural results and man-
agerial decisions.

3.1.1. Case 1: Traditional Practice. The next pro-
position establishes the optimal quantity of purchased
olives for any realized yield parameter, u, in the tra-
ditional practice, where the company does not lease
any farm space (thus, Q= 0).
Proposition 2. For any realized yield, u, and first-

stage decision Q= 0, the optimal quantity to be purchased
for producing olive oil is equal to

q∗2 = �K−�p�u��+ F −1
(
p�u�+ b− c2�u�− cp
p�u�+ b−h2

)
� (6)

From this point on, we use the following expres-
sions in the notation.

!1�u� =
p�u�+ b− c2�u�− cp
p�u�+ b−h2

where 0< !1�u� < 1�

s1�u� = F −1
(
p�u�+ b− c2�u�− cp
p�u�+ b−h2

)
� and

TS1�u� = �K−�p�u��+ F −1
(
p�u�+ b− c2�u�− cp
p�u�+ b−h2

)
�

While the fraction !1�u� corresponds to the critical
fractile in the newsboy problem, s1�u� resembles the
amount of safety stock and TS1�u� represents the
“target amount of olive oil production” (e.g., order-
up-to quantity). The following lemma establishes the
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conditions in which s1�u� is a strictly increasing
(decreasing) function of u.

Lemma 3. (a) s1�u� is a strictly increasing function of
u when

(i) p′�u�≥ c′2�u�� or (7)

(ii) p′�u� < c′2�u� and !1�u� >
p′�u�− c′2�u�

p′�u�
� (8)

for all values of u; (b) s1�u� is a strictly decreasing function
of u when

p′�u� < c′2�u� and !1�u� <
p′�u�− c′2�u�

p′�u�
(9)

for all values of u.

The conditions stated above provide insight about
the behavior of s1�u�. If the profit margin from pur-
chasing olives increases with the yield, then s1�u�
increases in u. This occurs when the reduction in
price is less than that of the purchasing cost. In this
case, the producer expects to have its worst profit
margins when the yield is at its lowest value and
vice versa. When the profit margin decreases with
the yield, however, s1�u� can still be increasing in u
as long as the newsboy fractile, !1�u�, is greater than
the percentage change in the profit margin w.r.t. the
change in price. Note that the RHS of conditions (8)
and (9) are the same and can be interpreted as the
percentage of change in profit margin through pur-
chasing of olives w.r.t. the change in price. While the
left-hand side in (8) is an increasing function of u, the
RHS can be either increasing or decreasing, depend-
ing on how the price and the purchasing cost change
w.r.t. the yield. For example, when a linear relation-
ship is assumed between the price, the purchasing
cost, and the yield, then the RHS becomes a constant.
As long as !1�u� is greater than the RHS (a constant) at
the lowest yield value, u= 0, s1�u� strictly increases in
the yield. Alternatively, if !1�u� is less than the RHS,
even at the highest yield value, u = B, then s1�u� is
strictly decreasing in the yield. The following lemma
states the behavior of the target amount of olive oil
production w.r.t. the yield, namely under decreasing
returns w.r.t. the yield, the target amount of olive oil
production is a strictly increasing function of u.

Lemma 4. (a) TS1�u� is a strictly increasing function
of u when

(i) p′�u�≥ c′2�u�� or

(ii) p′�u� < c′2�u� and

!1�u� >
p′�u�− c′2�u�

p′�u�
+ p�u�+ b−h2
p′�u�cv′1�u�

(10)

for all values of u; (b) TS1�u� is a strictly decreasing
function of u when

p′�u� < c′2�u� and

!1�u� <
p′�u�− c′2�u�

p′�u�
+ p�u�+ b−h2
p′�u�cv′1�u�

(11)

for all values of u, where cv′1�u�= ��F −1�!1�u��/�!1�u��/
�−�p′�u��.
To conclude that TS1�u� is an increasing function,

s1�u� may not necessarily be increasing. TS1�u� can
be increasing even when the increase in expected
demand is greater than or equal to the decrease in
safety stock, s1�u�. This explains why a wider range of
!1�u� ensures an increasing behavior for TS1�u� than
for s1�u�.

3.1.2. Case 2: No Purchasing of Olives From
Other Farmers. We show that when q2 = 0, the opti-
mal amount of olive oil production depends on the
realized yield.

Proposition 5. For any realized yield, Qu, the optimal
amount of olive oil produced from internally grown olives
is equal to

q∗1 =




Qu when Qu≤ �K−�p�u��

+F −1
(
p�u�+b−h1−cp
p�u�+b−h2

)

�K−�p�u��+F −1
(
p�u�+b−h1−cp
p�u�+b−h2

)

when Qu>�K−�p�u��

+F −1
(
p�u�+b−h1−cp
p�u�+b−h2

)
�

(12)

To simplify, we use the expressions that will follow
the notation below:

!2�u� =
p�u�+ b−h1− cp
p�u�+ b−h2

where 0< !2�u� < 1�

s2�u� = F −1
(
p�u�+ b−h1− cp
p�u�+ b−h2

)
� and

TS2�u� = �K−�p�u��+ F −1
(
p�u�+ b−h1− cp
p�u�+ b−h2

)
�
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Again, !2�u� corresponds to the newsboy fractile, s2�u�
resembles the safety stock, and TS2�u� represents the
target amount of olive oil production.

Proposition 6. s2�u� is a strictly decreasing function
of u.

The optimal value of q∗1 depends on the realized
yield. When the realized yield is high enough, the
producer chooses to use only a portion of the yield,
which is equal to TS2�u�. The amount of TS2�u�
can be considered as the target amount of olive oil
production when there is a sufficiently high yield for
any given u.

Lemma 7. (a) TS2�u� is a strictly increasing function
of u when

!2�u� > 1+
p�u�+ b−h2
p′�u�cv′2�u�

(13)

for all values of u; (b) TS2�u� is a strictly decreasing func-
tion of u when

!2�u� < 1+
p�u�+ b−h2
p′�u�cv′2�u�

(14)

for all values of u, where cv′2�u�= ��F −1�!2�u��/�!2�u��/
�−�p′�u��.
It should be noted that the conditions for the in-

creasing and decreasing behavior of TS2�u� are similar
to those developed for TS1�u�. Because

p′�u�− c′2�u�
p′�u�

< 1 when c′2�u� > p
′�u��

the RHS of (13) and (14) are greater than the RHS
of (10) and (11). Thus, the condition for TS2�u� to be
increasing is greater than that of TS1�u�.
The next proposition compares the optimal olive oil

production under the traditional practice (no leasing
of farm space) and the case of not purchasing olives.

Proposition 8. For a given value of u, the optimal
amount of olive oil production targeted in the case of no
farm space leasing, q∗1 = TS2�u�, is greater than that of
the case of not purchasing olives, q∗1 = TS2�u�, i.e., q∗1 =
TS2�u� > q

∗
1 = TS2�u�.

Denote the values of yield u that solve Qu= TS1�u�,
Qu = TS2�u� by u1�Q�, and u2�Q�, respectively. The
above proposition implies that u1�Q�= �1/Q�TS1�u� <
u2�Q� = �1/Q�TS1�u�. Furthermore, one can see that

u1�Q� and u2�Q� are both decreasing in Q. Finally, the
structural results of the second stage can be summa-
rized with the following proposition for the general
model (presented in §2).

Proposition 9. For a given u the optimal values of
internally grown and purchased olives used for olive oil
production is as follows:

�q∗1� q
∗
2 �=




�Qu�TS1�u�−Qu�
for u ∈R1 = 'u( Qu< TS1�u�)

�Qu�0�

for u ∈R2 = 'u( TS1�u�≤Qu< TS2�u�)
�TS2�u��0� for u ∈R3 = 'u( Qu≥ TS2�u��)

Using the optimal policies in each region, the
expected second-stage return function for each inter-
val can be written as

E���R1�q
∗
1�q

∗
2 �u∈R1��

= �p�u�−�c2�u�+cp���K−�p�u��
−�c2�u�+cp−h2�s1�u�+c2�u�Qu
−�p�u�+b−h2�

∫ A2

s1�u�
��−s1�u��f ���d�

E�
[
�R2�q

∗
1�q

∗
2 �u∈R2�

]
= �p�u�−h2��K−�p�u��
−�cp−h2�Qu−�p�u�+b−h2�
·
∫ A2

Qu−�K−�p�u��

[
�−�Qu−�K−�p�u���]f ���d�

E���R3�q
∗
1�q

∗
2 �u∈R3��

= �p�u�−cp−h1��K−�p�u��
−�cp+h1−h2�s2�u�+h1Qu
−�p�u�+b−h2�

∫ A2

s2�u�
��−s2�u��f ���d��

In light of this observation, one can see that Qu =
TS1�u� and Qu = TS2�u� are the two break points
where the optimal policy changes. Furthermore, it
can be observed that the expected second-stage return
function maintains continuity at these two break
points.

Lemma 10. The following always hold:

(a) E���R1�q
∗
1� q

∗
2 � u ∈R1���Qu=TS1�u�

= E���R2�q∗1� q∗2 � u ∈R2���Qu=TS1�u�� and
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(b) E���R2�q
∗
1� q

∗
2 � u ∈R2���Qu=TS2�u�

= E�
[
�R3�q

∗
1� q

∗
2 � u ∈R3�

]�Qu=TS2�u��
Proposition 11. PA�Q�u� is continuous in Qu and

has break points at Qu= TS1�u� and Qu= TS2�u�.

3.2. Analysis of the First Stage
This section presents the optimality conditions in the
first stage. In light of the analysis of the second
stage presented in §3.1, a complete expression for
E� �Q�� is derived first. Then it is shown that E� �Q��
is concave in Q, and thus the optimal Q∗ can be
found by equating the first-order derivative to zero.
The objective function stated in Equation (5) can be
written as

E� �Q��=−c1Q

+




∫ B

0
�E���R1�q

∗
1� q

∗
2 �Qu ∈R1���g�u�du

when u1�Q�≥ B∫ u1�Q�

0
�E���R1�q

∗
1� q

∗
2 �Qu ∈R1���g�u�du

+
∫ B

u1�Q�
�E���R2�q

∗
1� q

∗
2 �Qu ∈R2���g�u�du

when u1�Q� < B and u2�Q�≥ B∫ u1�Q�

0
�E���R1�q

∗
1� q

∗
2 �Qu ∈R1���g�u�du

+
∫ u2�Q�

u1�Q�
�E���R2�q

∗
1� q

∗
2 �Qu ∈R2���g�u�du

+
∫ B

u2�Q�
�E���R3�q

∗
1� q

∗
2 �Qu ∈R3���g�u�du

when u2�Q� < B�

(15)

Proposition 12. E� �Q�� is continuous and concave
in Q.

The concavity is important for sufficiency of the
first-order optimality conditions. Although the opti-
mal amount of farm space to be leased, Q∗, cannot
be expressed in a closed-form expression (due to the
lack of explicit functional relationships between price,
purchasing cost, and yield as well the pdf of yield
and demand), it can be calculated by equating the
first-order derivative of E� �Q�� to zero. The condi-
tion that makes leasing farm space a profitable invest-
ment for olive oil producers relates to the unit cost of
leasing and the expected savings from not having to
purchase olives, as stated below:

Proposition 13. The optimal amount of farm space
leased is strictly positive, i.e., Q∗ > 0, when∫ B

0
�uc2�u��g�u�du− c1 > 0� (16)

The condition in Equation (16) has managerial
implications. It shows how much money is saved (in
expected value) by not having to purchase olives from
external farmers (in the second stage) for each unit
of investment made in the first stage at a cost of c1.
The term uc2�u� is the yield times the purchasing cost
of olives at this specific value of the yield while g�u�
is its associated probability. Thus, a corresponding
amount would be saved in the second stage for each
unit of investment in the first stage. The integral over
�uc2�u��g�u� determines the expected amount of sav-
ings in the second stage for each unit of investment
made in the first stage.

3.3. The Value of First Chance (Leasing) and
Second Chance (Purchasing)

This section investigates the value of leasing and hav-
ing a second chance to obtain olives. A similar analy-
sis is shown in Jones et al. (2001) when a hybrid seed
corn producer gets a second chance of production (or
purchasing) in the second stage. Our analysis extends
their work in two ways: (1) the value depends on the
sale price and the purchasing cost that vary with the
realized yield and (2) the value of initial investment
can be calculated separately due to the fact that an
olive oil producer can satisfy its demand exclusively
by purchasing olives from farmers without leasing
farm space.

3.3.1. Case 1: Traditional Practice. In this sec-
tion, we determine the expected profit of an olive
oil producer who does not lease farm space. In this
case, Q= 0 and q1 = 0. However, the purchasing
cost of olives and the sale price of olive oil con-
tinue to change w.r.t. the realized yield. Proposition 2
implies that q∗2 = TS1�u� under this scenario. Defining
 C1�Q= 0� as the profit of the traditional olive oil pro-
ducer, the expected profit function can be written as
follows:

E� C1�Q= 0��
=
∫ B

0

{
�p�u�− c2�u�− cp��K−�p�u��
− �c2�u�+ cp−h2�s1�u�− �p�u�+ b−h2�
·
∫ A

s1�u�
��− s1�u��f ���d�

}
g�u�du�
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It should be noted that the value of E� C1�Q = 0��
depends on how the sale price of olive oil, p�u�, and
the purchasing cost of olives, c2�u�, change w.r.t. the
crop yield u, as well as the pdf of the yield. We define
the value added through leasing farm space as the
difference between the expected profit obtained from
leasing the optimal amount of farm space, Q∗, and the
expected profit of the case when no leasing occurs:
i.e., V1 = E� �Q∗��−E� C1�Q= 0��.

3.3.2. Case 2: No Purchasing of Olives from
Other Farmers. The value obtained from a second
opportunity of purchasing olives from other farm-
ers is analyzed as in Jones et al. (2001). Purchasing
olives would be needed when the realized yield is
low. In this scenario, q2 is forced to be zero, and the
expected profit is not influenced by the purchasing
cost, but it remains to be dependent on how the sale
price changes with the yield. Proposition 5 implies
that q∗1 =Qu when Qu≤ TS2�u�, and q∗1 = TS2�u� when
Qu > TS2�u�. In this case, TS2�u� serves as the only
break point in the expected profit function. Denoting
the profit obtained from this case with  C2�Q�, the
expected profit function can be written as

E� C2�Q��=−c1Q

+




∫ B

0

{
�p�u�−h2��K−�p�u��
−�cp−h2�Qu−�p�u�+b−h2�
·
∫ A2

Qu−�K−�p�u��

[
�−�Qu−�K−�p�u���]f ���d�

}

·g�u�du
when u2�Q�≥B∫ u2�Q�

0

{
�p�u�−h2��K−�p�u��
−�cp−h2�Qu−�p�u�+b−h2�
·
∫ A2

Qu−�K−�p�u��
��−�Qu−�K−�p�u����f ���d�

}

·g�u�du∫ B

u2�Q�

{
�p�u�−cp−h2��K−�p�u��
−�cp+h1−h2�s2�u�+h1Qu−�p�u�+b−h2�
·
∫ A2

s2�u�
��−s2�u��f ���d�

}
g�u�du

when u2�Q�<B�

The value of having a second chance (purchasing
olives from other farmers) is given by V2=E� �Q∗��−

E� C2�Q
∗
C2��,whereQ

∗ andQ∗
C2 are theoptimalamounts

of farm space leased that maximize E� �Q�� and
E� C2�QC2��, respectively. The following proposition
shows that the optimal amount of farm space leased in
the original problem is always less than that of Case 2.

Proposition 14. The optimal amount of farm space
leased, Q∗, is always smaller than the optimal amount Q∗

C2.

The above result has managerial implications for
decision making under yield uncertainty. The flexibil-
ity of having a second chance to obtain more supplies
can reduce the optimal amount of olive production.
Producers who have an alternative source of supply
in the second stage do not need to invest in a large
amount of production in the first stage. Similarly, if
a manufacturer has the option of outsourcing from a
supplier after realizing the yield, she should produce
a smaller amount of products in the first stage.

4. An Empirical Application
This section presents an empirical application of
the above theoretical framework. The key price and
cost data were provided by the Ayvalık Chamber
of Commerce in Turkey (the largest organization
in Edremit Bay that monitors olive oil production).
These data were also confirmed by other produc-
ers operating in the same region.6 The following lin-
ear relationships were used in the model: p�u� =
19�86 − 9�93u; c2�u� = 8�22 − 4�11u; c1 = $2�64/can;
cp = $3�13/can; h1 = $1�97/can; h2 = $4�00/can; b =
$5�00/can; K = 100�000; and �= 1�000. Therefore, the
demand function is D�p�u�� = 100�000 − 1�000p�u� +
� where � is distributed uniformly between −10�000
and +10�000, i.e., A1 = A2 = 10�000. To highlight the
impact of yield uncertainty, we begin our analysis
with a distribution that has a high variance, where u
follows a discrete uniform distribution between 0.01
and 1.00 with increments of 0.01 and a correspond-
ing probability of 0.01. Using these data, Figure 2

6 A five-liter can of naturally pressed olive oil is used as the final
product, and the cost of its echelon olives and farm space are calcu-
lated by the following conversion rates: (i) five kilograms of olives
are used to obtain a liter of olive oil, and therefore a can corre-
sponds to 25 kilos of olives; (ii) each olive tree provides at most
(e.g., perfect yield) 200 kilograms of olives, and thus a can corre-
sponds to 12.5% of the maximum outcome of a tree.
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Figure 2 (a) The Amount of Safety Olive Oil in the Case of Traditional
Practice �s1�u�� and No Purchasing of Olives �s2�u�� as a
Function of Yield u; (b) The Target Amount of Olive Oil Pro-
duction in the Cases of Traditional Practice �TS1�u�� and No
Purchasing of Olives �TS2�u�� as a Function of Yield u in the
Empirical Application

The Values of s1(u) and s2(u)

0.00

2, 000. 0 0

4 ,000. 0 0

6 ,000. 0 0

8, 000. 0 0

10, 000. 0 0

u
0.0

7
0.1

4
0.2

1
0.2

8
0.3

5
0.4

2
0.4

9
0.5

6
0.6

3 0.
7

0.7
7

0.8
4

0.9
1

0.9
8

u

s
1
(u

) 
an

d
 s

2
(u

)

The Values of TS1(u) and TS2(u)

75,000.00

80,000.00

85,000.00

90,000.00

95,000.00

100,000.00

u

0.
07

0.
14

0.
21

0.
28

0.
35

0.
42

0.
49

0.
56

0.
63

0.
70

0.
77

0.
84

0.
91

0.
98

u

T
S

1
(u

) 
an

d
 T

S
2
(u

)

(a)

(b)

s2(u)

s1(u)

TS2(u)

TS1(u)

shows how s1�u�, s2�u� (in Part a), and TS1�u� and
TS2�u� (in Part b) vary w.r.t. the yield, u. Proposition
6 implies that s2�u� is always decreasing in u, while
s1�u� can exhibit either an increasing or a decreasing
behavior. In the example here, s1�u� was increasing
in u. Furthermore, the increase in expected demand
was higher than the decrease in s2�u�, therefore both
TS1�u� and TS2�u� exhibited an increasing behavior
in u.
Next the original problem was solved along with

the two special cases presented in §3. As shown in
Figure 3, the expected profit of the original prob-
lem was maximized for Q∗ = 100�941 with an opti-
mum expected profit of E� �Q��= $446�137�61. When
there was no leasing of farm space �Q = 0�, the
expected profit obtained by solving the newsboy
problem for each realization of u (and later taking the
expectation) was found as E� C1�Q�� = $434�421�26.
In this particular application, the option of leas-
ing farm space increased the expected profit of the
producer by V1 = $11�716�35, which corresponds to

Figure 3 The Expected Profit Functions of the Original Problem
�E�	�Q��� and the Two Special Cases of Traditional Practice
�E�	C1�Q��� and No Purchasing of Olives �E�	C2�Q���
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a 2.70% increase. The value of the second chance
(purchasing olives from other farmers) is clearly
seen in Figure 3. When this flexibility was elimi-
nated �q2 = 0�, the producer had to lease the optimal
amount Q∗ = 189�985, and the expected profit would
reduce to E� C2�Q�� = $183�924�40. Therefore, the
value of the second chance, V2, is equal to $262�213�21,
which increases the expected profit by 142.57%. This
expected profit is significantly lower than that of the
original problem, which is caused primarily by the
losses that would occur when the realized yield was
low. Under this scenario, the producer cannot pur-
chase olives externally to eliminate the loss equalling
the sum of the opportunity cost of not selling the
product p�u� − cp − c2�u� and the cost of unsatisfied
demand, b.
While in traditional yield uncertainty studies the

optimal production quantity increases with higher
yield variance, an opposite reaction can occur in
the particular problem studied here—i.e., the opti-
mal amount of farm space leased can decrease with
increased yield variance. This observation can be
best exemplified when the yield is set to a point
distribution u = 0�505 with a probability of 1 (and
no variation). In this case the optimal amount to be
leased would become Q∗ = 183�976, and the corre-
sponding profit was $516�665�40. Thus, the optimal
amount of farm space to be leased is significantly
higher than the optimal solution when the yield
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variance is higher, and an opposite impact of yield
uncertainty is observed. A comparison of the optimal
solutions of the no-variance and higher yield variance
scenarios validates the results commonly reported in
the traditional random yield literature. It should be
observed here that when the oil producer leases Q∗ =
183�976 olive trees under the no-variance case, she
does not purchase olives from other farmers. In this
case, the realized yield would be Qu= 92�907, which
exceeds TS1�u� = 88�497, and the producer would
not need to purchase more olives. Therefore, we can
compare the optimal solution of the no-variance case
with that of Case 2 (no purchasing of olives from
other farmers) with higher yield variance. The opti-
mal solution recommends leasing Q∗

C2 = 189�985 trees,
which is higher than the no-variance solution �Q∗ =
183�976�. This validates the result that higher yield
variance leads to an increase in the optimal pro-
duction quantity under the traditional yield uncer-
tainty setting. Furthermore, the expected profit under
higher yield variance is significantly lower than the
no-variance scenario.
One of the key factors that requires the attention of

an implementing manager is the relationship between
the price of olive oil, the purchasing cost of olives,
and the olive yield; namely, p�u� and c2�u�. While it is
impossible to know the exact functional forms of p�u�
and c2�u�, the producers do not have sufficient data to
accurately predict them either. This is due to the fact
that olive trees produce fruit every other year mak-
ing their environment unique from those in repetitive
manufacturing cases (where frequent experiments can
be conducted to construct such definitions). At this
juncture, the model presented here benefits produc-
ers by signaling the importance of understanding the
relationship between the olive oil price, the purchas-
ing cost of olives, and the yield. Linearly decreasing
functions of the yield for p�u� and c2�u� are defined in
the above empirical application. The decision to use
linearly decreasing functions is made for two reasons:
The first is the above-mentioned lack of data to accu-
rately determine the form of p�u� and c2�u�. The sec-
ond is the surprising consensus among managers that
the profit margin is lower when the yield is high and
is higher when the yield is low. This observation is
captured by linearly decreasing functions in the yield
for p�u� and c2�u�. It should be noted here that the

benefits of using this approach would increase when
oil producers collect sufficient data to define these
relationships more precisely. In different production
environments the profit margin can have an oppo-
site reaction to yield than the olive oil market. The
approach presented in this paper is general enough
to accommodate a wide range of functions that reflect
various market conditions.

5. Conclusions and Managerial
Insights

This paper presents a model to be used in produc-
tion planning under yield and demand uncertainty
where the sale price and the purchasing cost are
dependent on the realized yield. The model is a two-
stage stochastic program with recourse, and finds a
focused application in the olive oil industry. While a
traditional olive oil producer purchases olives from
farmers and only experiences the demand uncertainty
when producing olive oil, a recent practice of leas-
ing farm space to increase profits introduces an addi-
tional yield uncertainty. The model determines the
optimal amount of farm space to be leased in the
first stage, the amount of olives to be purchased from
other growers, and the total amount of olive oil to
be produced in the second stage. While the amount
of farm space to be leased can be solved optimally,
the paper determines the conditions that lead to the
optimal choices of olive oil production. Furthermore,
it addresses the value of a first chance (leasing farm
space) and a second chance (purchasing olives from
other farmers) of obtaining olives for oil production.
The theoretical findings are tested in an empirical
application with real data obtained from a firm.
Our paper shows that the optimal amount of farm

space leased by the oil producer decreases under the
presence of a second source of supply. While tradi-
tional yield uncertainty papers commonly conclude
that the initial production investment increases with
higher yield variation, this paper shows that the
optimal amount of farm space leased by the olive oil
producer may decrease. This is primarily due to the
second chance of obtaining olives from other farm-
ers when the realized yield is low. This result is also
useful for manufacturers. Under the presence of an
alternative (reliable) supplier for the same product,
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manufacturers can utilize this supplier in the cases
of lower yield. When practiced, this can reduce their
production lot sizes as well.
This paper is the first of its kind in terms of the

yield-dependent price and purchasing cost definitions
in the area of random yield and demand. Using this
definition, it can be extended to other areas of applica-
tion as well as different environments through future
research.
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enthusiasm and continuous support. He provided enor-
mous insight during numerous conversations. The author
would also like to thank Ms. Hale Tenli of the İzmir Cham-
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Appendix
Proof of Proposition 1. We first show that E����q1� q2 �

Q�u�� is concave in q1 and q2. The proof uses the first- and
second-order derivatives w.r.t. q1 and q2.

�E����q1�q2 �Q�u��
�q1

= �p�u�+b−cp−h1�−�p�u�+b−h2�

·F ��q1+q2�−�K−�p�u����
�2E����q1�q2 �Q�u��

�q21
= −�p�u�+b−h2�

·f ��q1+q2�− �K−�p�u���< 0�
because p�u= B� > h2 and p�u� is increasing with decreasing
values of u, p�u� > h2 for all u values. Similarly,

�E����q1�q2 �Q�u��
�q2

= �p�u�+b−c2�u�−cp�−�p�u�+b−h2�

·F ��q1+q2�−�K−�p�u����
�2E����q1�q2 �Q�u��

�q22
= −�p�u�+b−h2�

·f ��q1+q2�− �K−�p�u���< 0�
�2E����q1�q2 �Q�u��

�q1�q2
= −�p�u�+b−h2�

·f ��q1+q2�− �K−�p�u���< 0�
Furthermore, the Hessian is negative definite. Therefore,

E����q1� q2 �Q�u�� is concave in q1 and q2. As a result, the

maximand of E����q1� q2 �Q�u�� for any given Q and u is
also concave in q1 and q2.

Proof of Proposition 2. First, we write down the
expected second-stage return function when q1 = 0.

E����q1 = 0� q2 �Q�u��

=−c2�u�q2− cpq2+
∫ q2−�K−�p�u��

−A1
�p�u��K−�p�u�+ ��

+h2�q2− �K−�p�u�+ ����f ���d�

+
∫ A2

q2−�K−�p�u��
�p�u�q2− b��K−�p�u�+ ��− �q2���f ���d��

Because of concavity, the optimal q∗2 can be obtained by
equating the first-order derivative to zero.

�E����q1=0�q2 �Q�u��
�q2

= �p�u�+b−c2�u�−cp�−�p�u�+b−h2�

·F �q2−�K−�p�u���=0

F �q2−�K−�p�u��� = p�u�+b−c2�u�−cp
p�u�+b−h2

q∗2 = �K−�p�u��

+F −1
(
p�u�+b−c2�u�−cp
p�u�+b−h2

)
�

Proof of Lemma 3. We first prove Part (a) of the lemma.
�s1�u�/�u = ��F −1�!1�u��/�!1�u����!1�u�/�u�. Because F −1�·�
is an increasing function, �F −1�!1�u��/�!1�u� > 0 and the sign
of �s1�u�/�u is the same as that of �!1�u�/�u.

�!1�u�

�u
= �p′�u�− c′2�u���p�u�+ b−h2�− p′�u��p�u�+ b− c2�u�− cp�

�p�u�+ b−h2�2

= �p′�u�− c′2�u��− p′�u�!1�u�
�p�u�+ b−h2�

�

Because p�u� + b − h2 > 0 for all u, the numerator deter-
mines the sign of �!1�u�/�u. Note that p′�u� < 0 and
c′2�u� < 0. Since −p′�u�!1�u� > 0, the positivity of p′�u� −
c′2�u� suffices for �!1�u�/�u to be positive. p

′�u� − c′2�u� is
positive when p′�u� ≥ c′2�u�. This proves the first condi-
tion of Part (a). However, when p′�u� < c′2�u�, we need
�p′�u�− c′2�u��−p′�u�!1�u� > 0. This is satisfied when !1�u� >
�p′�u�− c′2�u��/p′�u�. Part (b) of the lemma can be proven
by enforcing the first-order derivative of !1�u� w.r.t. u to be
negative for all values of u. This can only happen when
p′�u� < c′2�u� and �p

′�u�− c′2�u��−p′�u�!1�u� < 0. The latter is
satisfied when !1�u� < �p′�u�− c′2�u��/p′�u� for all u�

Proof of Lemma 4. Taking the first-order deriva-
tive yields �TS1�u�/�u = −�p′�u� + �s1�u�/�u. The previ-
ous lemma implies that s1�u� is strictly increasing in u
when conditions (7) and (8) hold. Under (7), because
−�p′�u� > 0 and �s1�u�/�u> 0, �TS1�u�/�u > 0. Condition
(ii) allows more possibility for the sign of �TS1�u�/�u
to be positive. For �TS1�u�/�u to be positive, we need
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−�p′�u� + �s1�u�/�u > 0. Because F −1�·� is an increasing
function, �F −1�!1�u��/�!1�u� > 0 and the sign of �s1�u�/�u
is the same with that of �!1�u�/�u. This means we
need −�p′�u�+ ��F −1�!1�u��/�!1�u����!1�u�/�u� > 0. Because
p′�u�− c′2�u� < 0, −p′�u�!1�u� > 0,

1+ cv′1�u�
[
�p′�u�− c′2�u��− p′�u�!1�u�

p�u�+ b−h2

]
> 0

!1�u� >
p′�u�− c′2�u�

p′�u�
+ p�u�+ b−h2
p′�u�cv′1�u�

�

Part (b) of the lemma can be proven by changing the sign
under the same conditions.

Proof of Proposition 5. Proposition 1 implies that

E�
[
��q1� q2 = 0 �Q�u�

]

is concave in q1. When constraint set (4) is ignored, the opti-
mal amount of olive oil production from internally grown
olives can be found by equating the first-order derivative of
E����q1� q2 = 0 �Q�u�� to zero.
�E����q1� q2 = 0 �Q�u��

�q1
= �p�u�+ b− cp −h1�− �p�u�+ b−h2�

· F �q1− �K−�p�u���= 0�

F �q1 − �K − �p�u���= �p�u�+ b−h1− cp�/�p�u�+ b−h2� and
q∗1 = �K − �p�u�� + F −1��p�u�+ b−h1− cp�/�p�u�+ b−h2��.
Due to concavity, when (4) is included, the optimal q∗1
becomes

q∗1=




Qu when Qu≤ �K−�p�u��+F −1
(
p�u�+b−h1−cp
p�u�+b−h2

)

�K−�p�u��+F −1
(
p�u�+b−h1−cp
�p�u�+b−h2

)

when Qu>�K−�p�u��+F −1
(
p�u�+b−h1−cp
�p�u�+b−h2�

)
�

Proof of Proposition 6. �s2�u�/�u= ��F −1�!2�u��/
�!2�u�� · ��!2�u�/�u�, and because �F −1�!2�u��/�!2�u� is
always positive, it is sufficient to show that �!2�u�/�u is
negative for all u.

�!2�u�

�u
= p′�u��p�u�+ b−h2�− p′�u��p�u�+ b−h1− cp�

�p�u�+ b−h2�2

= p′�u��h1+ cp −h2�
�p�u�+ b−h2�2

< 0�

because h1 + cp − h2 > 0 by definition, p′�u� < 0, and p�u�+
b−h2 > 0.

Proof of Lemma 7. Because s2�u� is a strictly decreas-
ing function of u, for �TS2�u�/�u to be positive (Part a), we
need −�p′�u� > �F −1�!2�u��/�!2�u���!2�u�/�u�. This implies
�p�u�+ b−h2�/cv′2�u� > �p′�u��1 − !2�u��� and is satisfied
when �p�u�+ b−h2�/��p′�u��cv′2�u�� > 1−!2�u�. Thus !2�u� >

1+ �p�u�+ b−h2�/�p′�u�cv′2�u�� for all values of u. Part (b)
can be shown by changing the sign of the inequality.

Proof of Proposition 8. When Qu > TS2�u�, q∗1 =
TS2�u�. For the same realization of yield fraction, u, q∗2 =
TS1�u�. The difference between the target optimals of Case
1 and Case 2 is

q∗1−q∗2=F −1
(
p�u�+b−h1−cp
p�u�+b−h2

)
−F −1

(
p�u�+b−c2�u�−cp
p�u�+b−h2

)
�

h1 < c1 and c1 < c2�u= B� for all values of u, and �p�u�+ b−
h1− cp� > �p�u�+ b− c2�u�− cp�. Because

p�u�+ b−h1− cp
p�u�+ b−h2

>
p�u�+ b− c2�u�− cp
p�u�+ b−h2

�

we have

F −1
(
p�u�+ b−h1− cp
p�u�+ b−h2

)
> F −1

(
p�u�+ b− c2�u�− cp
p�u�+ b−h2

)
�

Therefore,

q∗1−q∗2 = F −1
(
p�u�+b−h1−cp
p�u�+b−h2

)

−F −1
(
p�u�+b−c2�u�−cp
p�u�+b−h2

)
>0�

Proof of Proposition 9. We first show the proof when
Qu< TS1�u�. In this interval of Qu values, each unit of
q2 costs the company c2�u� units to purchase in the sec-
ond stage, while the internally grown olives do not cost
extra. The comparison of the first-order derivatives w.r.t. q1
and q2 shows that the expected second-stage return func-
tion increases more by utilizing the internally grown olives.
Therefore, the company gives priority to increase q1 before
starting to purchase q2. Proposition 5 implies that q1 can be
increased up to TS2�u�. However, because Qu is less than
TS1�u�, which is less than TS2�u� as shown in Proposition
8, q1 can increase only up to Qu. Therefore, the optimal
amount of internally grown olives used for olive oil produc-
tion, q∗1 , is equal to Qu. When this is the case, we can rewrite
the expected second-stage return function as follows:

E����q1 =Qu�q2 �Q�u��
=−c2�u�q2− cp�Qu+ q2�

+
∫ �Qu+q2�−�K−�p�u��

−A1

[
p�u��K−�p�u�+ ��+h2��Qu+ q2�

− �K−�p�u�+ ���]f ���d�
+
∫ A2

�Qu+q2�−�K−�p�u��

[
p�u��Qu+ q2�− b��K−�p�u�+ ��

− �Qu+ q2��
]
f ���d��
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The first-order derivative is sufficient to locate the optimal
q2:

�E����q1 =Qu�q2 �Q�u��
�q2

= �p�u�+ b− c2�u�− cp�− �p�u�+ b−h2�
· F ��Qu+ q2�− �K−�p�u����

Because F ��Qu+ q2�− �K −�p�u���= �p�u�+ b− c2�u�− cp�/
�p�u�+ b−h2�, q∗2 = TS1�u�−Qu. This completes the proof
for Qu< TS1�u�. In the next two intervals, the optimal val-
ues of q∗1 directly follow from Proposition 5.

Proof of Lemma 10. Substituting Qu = TS1�u� in
E���R1 �q

∗
1� q

∗
2 � u ∈R1�� and E���R2 �q∗1� q∗2 � u ∈R2��, and Qu=

TS2�u� in E���R2 �q
∗
1� q

∗
2 � u ∈ R2�� and E���R3 �q∗1� q∗2 � u ∈ R3��

provides the proof for Parts (a) and (b), respectively.
Proof of Proposition 11. Proof follows Lemma 10.
Proof of Proposition 12. We first show that for any

given u, the second-stage return function PA�Q�u� is con-
cave in Q. We already know from Lemma 10 that for any
given u, PA�Q�u� is continuous in Q.

�E���R1�q
∗
1�q

∗
2 �Qu∈R1��

�Q
= uc2�u�� when u1�Q�≥B

�E���R2�q
∗
1�q

∗
2 �Qu∈R2��

�Q
= �p�u�+b−cp�u−u�p�u�+b−h2�

·F �Qu−�K−�p�u����
when u1�Q�<B and u2�Q�≥B

�E���R3�q
∗
1�q

∗
2 �Qu∈R3��

�Q
= uh1� when u2�Q�<B�

It should be observed that F �Qu − �K − �p�u��� increases
with increasing values of Q, i.e.,

�F �Qu− �K−�p�u���
�Q

> 0�

and thus

�2E���R2 �q
∗
1� q

∗
2 � u ∈R2��

�Q2
< 0�

Furthermore, �2E���R1 �q
∗
1� q

∗
2 � u ∈ R1��/�Q

2 and
�2E���R3 �q

∗
1� q

∗
2 � u ∈ R3��/�Q2 are both equal to zero.

Therefore, the second derivative of PA�Q�u� is less than or
equal to zero for any given value of u. Thus, PA�Q�u� is
concave in Q for any given value of u.
Equation (15) presents the objective function E� �Q�� as

the integral of concave functions plus a linear term −c1Q.
Because integrals of concave functions are also concave (see
p. 65 of Boyd and Vandenberghe 2002), E� �Q�� is concave
in Q.

Proof of Proposition 13. For small values of Q close
to zero, we know that the objective function is E� �Q�� =

−c1Q + ∫ B
0 �E���R1 �q

∗
1� q

∗
2 � u ∈ R1���g�u�du. When this is

the case, while the first-order derivative is �E� �Q��/�Q =
−c1+

∫ B
0 �uc2�u��g�u�du, the second-order derivative is zero.

Therefore, if
∫ B
0 �uc2�u��g�u�du− c1 > 0, due to linearity, Q

would be increased up to the first point when u1�Q� =
B. Due to concavity, this is at least the highest point of
E� �Q��, even if it is not increasing beyond this point.
Therefore, Q= 0 cannot be optimal, and thus Q∗ > 0.

Proof of Proposition 14. Consider the optimal amount
of farm space leased in the case that purchasing olives is not
allowed (Case 2), Q∗

C2. Because of concavity, the first-order
derivative of E� C2�Q�� determines this optimal amount.
Thus,

�E� C2�Q��

�Q

∣∣∣∣
Q=Q∗

C2

=−c1+h1ū+
∫ u2�Q�

0

[
�p�u�+b−cp−h1�u−u�p�u�+b−h2�

·F �Qu−�K−�p�u���]g�u�du=0�
where ū represents the expected value (mean) of the yield
random variable. Proposition 5 implies that F �TS2�u�− �K−
�p�u��� = �p�u�+ b− cp −h1�/�p�u�+ b−h2�, and substitut-
ing p�u�+ b− cp−h1 = �p�u�+ b−h2�F �TS2�u�− �K−�p�u���
into above expression we obtain

�E� C2�Q��

�Q

∣∣∣∣
Q=Q∗

C2

=−c1+h1ū+
∫ u2�Q�

0

[
u�p�u�+b−h2�'F �TS2�u�−�K−�p�u���

−F �Qu−�K−�p�u���)]g�u�du=0�
Note that c1 > h1, and because 0 < ū < 1, −c1 + h1ū < 0.
We also know that u�p�u� + b − h2� > 0 for all u values.
Then, to equate the above expression to zero, we need the
integral term to be positive and equal to c1 − h1ū. Also
note that Q∗

C2 is such that at u = u2�Q� we have Qu =
TS2�u�. Observe that Q∗

C2 is such that in the region 0≤ u <
u2�Q

∗
C2�, TS2�u� > Q

∗
C2u. For example, when u= 0, TS2�u=

0� > Q∗
C2u= 0. Indeed, the difference of TS2�u�−Qu > 0 is

decreasing with increasing values of u= 0 to u= u2�Q�. We
next calculate the first-order derivative of the original prob-
lem at the point when Q =Q∗

C2, and show that the sign is
negative.

�E� �Q��

�Q

∣∣∣∣
Q=Q∗

C2

=−c1+h1ū+
∫ u1�Q�

0
�uc2�u�−uh1�g�u�du

+
∫ u2�Q�

u1�Q�

[
�p�u�+b−cp−h1�u−u�p�u�+b−h2�

·F �Qu−�K−�p�u���]g�u�du�
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By adding and subtracting
∫ u1�Q�
0 ��p�u� + b − cp − h1�u −

u�p�u�+ b−h2�F �Qu− �K−�p�u����g�u�du we obtain
�E� �Q��

�Q

∣∣∣∣
Q=Q∗

C2

= �E� C2�Q��

�Q

∣∣∣∣
Q=Q∗

C2

−
∫ u1�Q�

0

[
�p�u�+b−cp−c2�u��u−u�p�u�+b−h2�

·F �Qu−�K−�p�u���]g�u�du�
Proposition 2 implies that F �TS1�u�− �K−�p�u���= �p�u�+
b − cp − c2�u��/�p�u�+ b−h2�, so we can write the above
expression as

�E� �Q��

�Q

∣∣∣∣
Q=Q∗

C2

=−
∫ u1�Q�

0

[
u�p�u�+ b−h2��F �TS1�u�− �K−�p�u���

− F �Qu− �K−�p�u����]g�u�du�
Similarly, note that TS1�u� =Qu at u = u1�Q�, TS1�u = 0� >
Qu=0 when u=0. Thus, for the values of u in between
zero and u1�Q�, we get TS1�u�>Qu. Because u�p�u�+ b−
h2� > 0 for all u values, �u�p�u� + b − h2��F �TS1�u� − �K −
�p�u���− F �Qu− �K−�p�u����� > 0 and
�E� �Q��

�Q

∣∣∣∣
Q=Q∗

C2

= −
∫ u1�Q�

0

[
u�p�u�+ b−h2��F �TS1�u�− �K−�p�u���

− F �Qu− �K−�p�u����]g�u�du< 0�
Since the first-order derivative is negative at Q=Q∗

C2 in the
original problem and the objective function is concave, the
optimal amount of farm space leased, Q∗, is less than Q∗

C2.
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