
Cole et al. Satisfying Warranty Claims on an Obsolete Product

 
 

 
 

Satisfying Warranty Claims on an Obsolete Product 
 

Dwayne Cole 
College of Business Administration 

Florida A&M University 
Tallahassee, FL 32301 

dwayne.cole@famu.edu  
 

Burak Kazaz 
Martin J. Whitman School of Management 

Syracuse University 
Syracuse, NY 13244 

bkazaz@syr.edu  
 

Scott Webster 
W.P. Carey School of Business 

Arizona State University 
Tempe, AZ 85287 

scott.webster@asu.edu  
 

ABSTRACT 
 
We investigate a problem faced by a durable-goods manufacturer of a product that is no longer 
manufactured but still under warranty. A supplier announces that a component of the product 
will be phased out and specifies a deadline for the final order. A common response in traditional 
practice is to place a final order sufficient to cover future warranty claims. We analyze and 
compare this policy with a policy that uses a trade-in program to supplement the final order 
quantity.  
 
KEYWORDS: Warranty, trade-in policies, sustainability 
 

 
INTRODUCTION 
 
We investigate a problem faced by a durable-goods manufacturer of a product that is no longer 
manufactured but still under warranty. A supplier announces that a component of the product 
will be phased out and specifies a deadline for the final order. The manufacturer projects the 
component needs for the product under warranty and considers a two-stage decision problem: 
(1) the size of the final order and, in the event that the final order is less than actual 
requirements, (2) the design of a trade-in program for component harvesting.  
 
The importance and prevalence of this problem have increased over time due to shrinking 
product life-cycles and growth in outsourcing. These trends are especially pronounced in the 
computer industry where the high pace of change and technical challenges favor supply chains 
of independent firms with specialized expertise (e.g., AMD and Intel for processors, Seagate 
and Western Digital and for hard drives, Cisco and D-Link for routers, Flextronics and Selectron 
for assembly).  
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We consider the setting where the component phase-out announcement (CPOA) occurs after 
the manufacturer has discontinued manufacturing and sales of the parent product. The 
particular component contributes significantly to the value of the product and is not easily or 
inexpensively obtained from alternative suppliers (e.g., highly engineered and expensive 
component). These features elevate the importance of managerial attention on an effective 
response to the CPOA. We investigate how a firm’s optimal final order quantity and trade-in 
program decisions are influenced by industry and market characteristics.  
 
Our main contribution lies in two observations that come from our analysis. First, a trade-in 
program has potential to significantly reduce a firm’s warranty liability. Second, there are two 
key indicators that savings from a trade-in program will be significant. One indicator is the 
difference between the component cost and the marginal cost of the first unit acquired via trade-
in. A second indicator is the expected fraction of products under warranty that will fail. Both of 
these values should not be difficult for a firm to estimate.  
 
ELEMENTS OF THE COMPONENT PHASE-OUT ANNOUNCEMENT PROBLEM 
 
As a new generation of a component is introduced and the volume of the previous generation 
declines, a supplier eventually ceases to supply the older generation component and 
announces a time-line for phase out. While it is possible that a CPOA may occur when the 
manufacturer is still producing a product with the component, we limit consideration to the case 
where the product is no longer being manufactured (as is consistent with CPOA timing 
examples described to us by those in industry). Thus, the final component purchase decision is 
driven by warranty obligation considerations. Durable-goods manufacturers commonly offer a 
limited-time warranty to consumers.  
 
The CPOA problem can be viewed as a two-stage decision problem. The first-stage decision is 
the number of components in the final order. After the final order is placed, component demand 
is realized over time. The second-stage decision, if necessary, is the price discount to be 
offered on a trade-in.  
 
We assume that the firm has access to customer-specific warranty data. In these settings, the 
trade-in offer can be targeted to specific customers based on product age and time remaining 
under warranty. We also assume that warranty claim demand and trade-in return volume are 
known with certainty. Through this simplifying assumption we are able to gain some insight into 
what drives the value of a trade-in program. We leave consideration of uncertainty for future 
research.  
 
LITERATURE REVIEW 
 
Most consumer durables come with either a pro-rata refund or a free repair/replacement 
warranty policy (Blischke and Murthy 1992). Murthy et al. (2004) provide a comprehensive 
review of various issues associated with warranty management. Warranty claims are driven by 
the warranty population, usage characteristics, product reliability, and warranty terms. Seitz 
(2007) reports that the use of recovered components to satisfy warranty claims is a common 
practice in the automobile and home appliance industries. Cisco began using returns to support 
warranty claims in 2008. The initiative increased the recovered value from returns by nine-fold, 
from 5% to 45% (Nidumolu et al. 2009). 
 
There are three streams of research related to our two-stage problem of how a manufacturer 
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determines the size of the final order and designs the trade-in program for component 
harvesting. One of the streams relates to the final order quantity problem, which is the first-
stage decision in our model. Fortuin (1980) introduces a model wherein the machines’ 
remaining operating life is divided into discrete intervals and the number of components that fail 
in each interval is random. He proposes a method for estimating the component stock-out 
probability as a function of the final order quantity. Teunter and Hansveld (1998) extend the 
single component setting of the previous papers to a multi-component ordering problem. They 
show the multi-component problem can be decomposed into independent single-component 
ordering problems. Bradley and Guerrero (2009) also consider the multi-component final buy 
problem, though in contrast to Teunter and Hansveld (1998) who assume all components are 
phased out at the same moment in time, components are phased out gradually over time. 
Teunter and Fortuin (1999) develop a single-stage dynamic program to determine the optimal 
final order quantity for a single component. Their model allows for the possibility of harvesting 
components from returns as a source for spare-parts. However, the firm passively accepts 
used-product returns. This differs from our model where their firm actively manages return 
volumes through the setting of trade-in discounts over time. In sum, our work extends the 
literature on the final order quantity problem by supplementing the final order quantity with 
product acquired via a trade-in program—the second stage in our model. 
 
A second related stream of research addresses the use of returns as a source for spare parts. 
The literature on this topic is vast (e.g., see Kennedy et al. 2002 for a review). Within this 
literature, a number of researchers have studied the problem of managing component parts 
after the parent product has reached the end of its sales life-cycle. Minner and Kleber (2001) 
examine a setting where the firm produces a new component and remanufactures used 
components to meet a deterministic demand for spare parts. The authors develop a dynamic 
inventory framework and use optimal control techniques to determine an optimal production and 
recovery strategy for a firm that passively accepts used products. Spengler and Schröter (2003) 
also develop a dynamic model that integrates component harvesting. They use the model to 
study flows of new product sales, spare parts demands, product returns, and recovery rates. 
Their model focuses on the behavior of the spare parts management system. Acquisition cost 
and returns flows are exogenous in their model, and are endogenous in our model; they are 
influenced by the firm’s choices. Inderfurth and Mukherjee (2008) develop a decision model 
where the firm must meet a dynamic demand for spare-parts during the phase-out period. Our 
model resembles that of Inderfurth and Mukherjee (2008) in the sense that the firm chooses the 
final order quantity and remanufactures components from returned products to meet dynamic 
demand for spare parts. However, our model improves their model in two ways: (1) As opposed 
to an exogenous flow of returns, we assume that the firm proactively acquires used products 
from its install base; the firm sets trade-in discounts to influence the timing and quantity of the 
return flow. (2) We account for the impact of returns of product under warranty on future 
warranty claims. 
 
A third stream of related literature examines the relationships between new product prices, 
trade-in rebates, product return volumes, and new product purchases. Ray et al. (2005) 
examine how a trade-in program for a product that is remanufactured can be used as a price-
discrimination mechanism to increase profits. Bruce et al. (2006) study trade-in programs for 
expensive durables purchased with the aid of a loan (e.g., automobiles). They examine the 
relationship between the magnitude of the trade-in discount and the durability of the product. 
Rao et al. (2009) study the value of trade-in programs for products in which used product prices 
are negatively affected due to information asymmetry (e.g., a positive probability of buying a 
“lemon”). A key difference between these papers and our work is that there is no demand for 
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used components that must be met, as is the case in our problem. The papers that are most 
closely related to our second-stage problem address the procurement of end-of-use products 
from the install base. Guide and Van Wassenhove (2001) consider a firm that sets a buyback 
price to match the supply of cores with the demand for remanufactured components. Bakal and 
Akcali (2006) also consider a buyback price to match supply with demand. Galbreth and 
Blackburn (2006) study the interaction between procurement lot size and the firm’s sorting 
policies. Zikopoulos and Tagaras (2007) consider the problem of ordering used products from 
multiple supply sources with correlated recovery yield. Each of these papers considers a single-
stage decision environment. Our work differs from this literature by including a first-stage 
decision on the final order quantity. In addition, this literature focuses on returns to support the 
remanufactured product demand, not warranty claims. As a consequence, the models do not 
capture the negative correlation between return volume and future demand.  
 
In summary, our stage-one problem is similar to final purchase quantity problems in the 
literature. A key difference is the consideration of a trade-in program that leads to a two-stage 
decision problem. The final purchase quantity literature has not considered the design of trade-
in programs as a mechanism for acquiring used components. Our stage-two problem is similar 
to the problem of designing a trade-in program that is considered in the marketing and 
remanufacturing literature. As in this literature, we need to model how features of the trade-in 
program and other factors influence return volume. However, as noted above, a key difference 
is that we need to capture how return volumes influence future warranty claims. 
 
MODELS AND ANALYSES 
 
A firm has received a CPOA for a component from a sole-source supplier and must determine 
the final order quantity q1 that will be received at time t = 0. The purchase cost per unit is c1, the 
inventory holding cost rate is h, and the warranty claim service cost per unit is cw (e.g., 
disassembly, component replacement, reassembly, test, and shipping). The difference between 
the firm’s discount rate and the rate of inflation in operating costs and margin is r. The last 
warranty expires at time t = 1 (i.e., the unit of time is selected so as to normalize the warranty 
liability horizon to one period). 
 
The component demand rate at time t (due to warranty claims) is d(t), the cumulative demand 
through period t is D(t), i.e.,  
 

D(t) =  
0

t

d x dx ,                     (1) 

and the remaining warranty demand is  D t , i.e.,  

 

     1D t D D t  .                    (2) 

 
The component demand rate is net of any passive returns of product containing a working 
component. We assume deterministic demand and focus on identifying the drivers of 
performance in this setting.  
 
We let T1(q1) denote the time that component inventory from the final order reaches zero, or the 
end of the warranty horizon, whichever is smaller, i.e.,  
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T1(q1) =    1min min | ,1t D t q   

 
The total cost to service warranty claims is  
 

      
 

  
1 1

1 1 1 1 1 2 1 1

0

T q

rt
wC q c q e h q D t c d t dt C T q                   (3) 

 
where C2(t) is the cost of satisfying warranty claims over time interval [t, 1] given that the final 
order quantity runs out at time t. The first term in (3) is the component purchase cost of the final 
order of q1 units. The second term in (3) is the inventory holding and warranty claim servicing 
cost, of which the parenthetical term in the integrand is the inventory at time t that is assessed a 
holding cost rate h. 
 
Second-Stage Trade-in Policy 
 
A firm offering a trade-in program specifies the discount off the purchase price of a new model if 
the customer returns the old model. The trade-in credit is offered only to customers with product 
under warranty. Conceivably a firm could offer the trade-in discount to a customer with a 
product that is no longer under warranty. While such a customer might be willing to trade-in for a 
lower discount, the tactic of offering a trade-in discount for product not under warranty has two 
drawbacks. First, there is a risk that the component in the returned product will be faulty. This 
risk is low for product under warranty because, if it was faulty, the firm would have likely already 
received a claim. Second, the return of a product under warranty reduces the firm’s warranty 
liability associated with the obsolete component (i.e., the product containing the obsolete 
component is traded in for a new model of the product). 
 
The firm offers a time-sensitive trade-in to some fraction of warranty holders in each period so 
as to match the rate of supply with the rate of demand. We refer to this policy as a matching 
trade-in policy. A matching trade-in policy is viable in settings where the firm has access to 
customer-specific warranty data (i.e., customer contact information for products under 
warranty). Firms that sell directly to customers are likely to have this level of detail in warranty 
data.  
 
Before analyzing the trade-in policy, we describe how we model relationships between the 
trade-in discount, trade-in volume, and trade-in cost. We begin with two assumptions that allow 
us to define the fraction of customers who accept a trade-in offer as a function of the trade-in 
discount:  
 
Assumption 1 (A1). A customer receiving a trade-in offer receives a single take-it-or-leave-it 
offer and accepts the offer if consumer surplus is positive.  
 
Assumption 2 (A2). The valuation of the new model in exchange for the old model under 
warranty, denoted V, is independent of time and is uniformly distributed and ordered by age of 
ownership with range normalized to [0, 1]. 
 
An alternative to A1 is to allow multiple trade-in offers to the same customer over time. 
However, this promotes strategic behavior that greatly complicates the analysis and may work 
against the interest of the firm (e.g., customer holds out for a better offer). Uniformly distributed 
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valuation (A2) is common in the literature (e.g., Mussa and Rosen 1978, Purohit and Staelin 
1994) and results in return volume that is linear in price. A2 also specifies that a consumer who 
recently purchased the product will have a higher valuation than a consumer who has owned 
the product for a longer period of time, i.e., customers with older product will accept a lower 
trade-in offer than customers with newer product. 
 
A firm offering a trade-in program must select the trade-in discount and the rate at which 
customers are exposed to the trade-in offer (i.e., the trade-in offer rate), both of which may vary 
with time. The trade-in discount is ct(t) and the trade-in offer rate is (t) (e.g., (t) is the number 
of customers receiving a trade-in offer in period t). The contribution margin of a new model of 
the product is m and the variable cost is cn, i.e., the new model selling price is pn = cn + m. Thus, 
the trade-in price is cn + m – ct(t) and, by A1 and A2, the fraction of customers who accept the 
trade-in offer from among those who receive it is 
  

         – 1 – – 1n t n t t nt P V c m c t c m c t c t p                   (4) 

 
Rewriting (4) in terms of the trade-in credit,  
 

    – 1 –t nc t p t .                  (5) 

 
We see that the trade-in price is the complement of the acceptance rate (t), i.e.,  
 

     – 1–n tp c t t . 

 
Note that the new model selling price should be more than the maximum valuation of a trade-in 
exchange, i.e.,  
 

1n np c m   .                    (6) 
 
Condition (6) reflects the practical reality that customers are unlikely to trade in a product under 
warranty unless there is a trade-in discount. For example, pn < 1 would imply that fraction 1 – pn 
of customers would be willing to return their product (that is under warranty and functional) and 
pay full price for the new model. 
 
The value of pn – 1 is a measure of trade-in resistance. This value is the minimum trade-in 
discount that is required before any customers will be willing to return their unit. The larger the 
value of pn – 1, the greater the market resistance to a trade-in offer, and therefore, the firm is 
pressured to increase its trade-in offer with a higher value of ct(t). 
 
In (4), we see that the difference between the trade-in credit, ct(t), and the trade-in resistance, pn 
– 1, gives the fraction of those receiving the trade-in offer who accept the offer. Thus, the 
product return rate s(t) is 
  

            1t ns t t t c t p t         . 

 
In general, the specification of trade-in acquisition cost can be challenging due to the effect of 
cannibalization. We model this effect through parameter . The interpretation of  is relatively 
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straightforward when the difference between the firm’s discount rate and the rate of inflation (in 
costs and margin) is zero (i.e., r = 0):  is the fraction of trade-in customers who would have 
purchased the new model at full price in the future if the trade-in program was not offered, or 
repeat purchase rate. If r > 0, then the value of the full margin in the future is lower due to the 
time-value-of-money. All time-value-of-money effects and, more generally, all cannibalization 
effects are incorporated into the value of parameter . Indeed, it is possible for  to be negative 
in some settings, e.g., by reducing secondary market supply and thus cannibalization of new 
product sales. Accordingly, the cost of a component obtained through a trade-in is the reduction 
in margin through a trade-in sale, which is 
  

       2 – 1tc t c t m t                      (7) 

where  
   = (1 – )m – (pn – 1).    

 
We refer to the value of  as the trade-in potential, which can be interpreted as the difference 
between the gain from locking-in disloyal customers via the trade-in offer, (1 – )m, and the 
market resistance to a trade-in offer, pn – 1. More generally,  is the marginal profit on trade-in 
volume at the origin. For example, if  > 0, then trade-in potential is positive and trade-ins are 
profitable up to acceptance rate (t). On the other hand, if  < 0, then trade-in potential is 
negative and trade-ins are costly from the get-go. 
 
Without loss of generality, we define the product unit such that the warranty population at time 
zero is 1. In the absence of a trade-in program, the rate at which warranties expire at time t is 
given by n(t), which is known with certainty (e.g., obtained from company records). While n(t) 
can conceivably take any functional form, in the interest of parsimony, we limit consideration to 
the following form that depends on a single parameter, n  [0, 1]: 
 

  n(t) =
,       1

1 ,  1

n t

n t


  

, 

 
i.e., warranties expire at rate n over time interval [0, 1) and 1 – n warranties expire at time t = 1. 
Figure 1 illustrates three alternative warranty population functions over time in the absence of a 
trade-in program. 

 
Figure 1. Warranty population over time at different warranty expiration rates n = 0, 0.5, 1. 

 
The case of n = 1 reflects a setting where monthly sales of the product is relatively flat near the 
end of its life-cycle (e.g., warranty expires x months after purchase). The cases of n < 1 reflect 
settings where monthly sales of the product is relatively flat near the end of its life-cycle except 

0

1

0 1

n = 0

n = 0.5

n = 1
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for a jump in sales at the end through clearance pricing. The smaller the value of n, the larger 
the clearance sale volume relative to volume prior to clearance discounting.  
 
With the warranty population characterized, the remaining contributor to demand for 
components to service warranty claims is the component failure rate. We assume that the 
failure rate function is constant at value . This assumption is common in the literature (e.g., 
Murthy and Rodin 1990, Zhou et al. 2009). 
 
Assumption 3 (A3). The component failure rate is constant.  
 
Due to A3, in the absence of a trade-in program, the demand rate is d(t) = (1 – nt) and demand 
functions (1) and (2) become 
 

D(t) =    
0

1 1 0.5
t

nx dx t nt                    (8) 

           1 1 1 0.5 1D t D D t t n t         . 

 
In both expressions, the term in brackets reflects the degree to which cumulative demand and 
remaining demand are reduced when the warranty expiration rate n is greater than 0. 
 
We note that a returned unit may contain some value beyond the component that has been 
phased out. This value can be incorporated into our model as an additional parameter that does 
not change the structure of the model or the results. In the interest of parsimony, we do not 
introduce a separate parameter; its value, if significant, is included in parameter m (e.g., if 
margin is m and savings generated from other components in a returned product is s, then m = 
m + s/(1 – )). 
 
Matching Trade-In Policy 
 
The firm sets the trade-in credit ct(t) and the trade-in offer rate (t) so that component supply 
matches component demand over the remainder of the warranty horizon, i.e.,  
 

       s t t t d t                       (9) 

 
where (t) = ct(t) –   is the trade-in acceptance rate among those customers exposed to the 
trade-in offer at time t (see (4)), or the trade-in fraction. Note that (t) must be a valid fraction, 
i.e.,  
 

(t)  [0, 1],                    (10) 
 
and that a customer receives a trade-in offer no more than once (see A1), i.e.,  
 

 
1

0

1t dt  .                    (11) 

 
The firm’s choice of customers who will receive the trade-in offer over time is influenced by A2. 
Recall that A2 implies that customers with a soon-to-expire warranty are more likely to accept a 
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trade-in offer than customers with a more distant warranty expiration date. In recognition of A2, 
the firm sends the trade-in offer to customers in order of warranty expiration date.  
 
From (7), the component acquisition cost rate for the matching trade-in policy is 
 

 1
2c t =    1nt c m t        .              (12) 

 
Thus, the cost of the matching trade-in policy is 
 

        
1

1
2

0

, rt
wC e t c d t dt        

 
where functions (t) and (t) satisfy (9) – (11). We wish to find the function (t) that minimizes 
the second-stage cost subject to the relevant constraints. The problem is  
 

  
   

            
1 1

1
2

0,1
0 0

min : , 1rt
w

t
C e t c d t dt t t d t t dt


    



       
  
  . 

 
The following proposition characterizes the optimal solution to the preceding problem. 
 
Proposition 1. If  

0.5 1 1
2

r r
e e 


     

 
,                 (13) 

then the optimal trade-in fraction is 

 
  0.5 0.51

0.5

r rte e
t

r






 



,                (14) 

the optimal trade-in offer rate is 

   
 

0.5

0.5

0.5

1

rt
t

r

r e
t e

e










 

 
    

,           

the demand (and supply rate) is 
  d(t) =     tt t e     , 

the total number of units traded in is  
1
2 1q e   ,               

and the optimal second-stage cost is   

1
2C =

     0.5 0.51 1

0.5

r r

w

e e
c

r r

  


 

        
      
     
     

.     

 
Table 1 shows the maximum value of the failure rate  that satisfies condition (13) for various 
values of the net discount rate r. Recall that  is the failure rate over the duration of the second 
stage. For example, if the second-stage duration is five years and the annual net discount rate 
is 5%, then condition (13) holds for a failure rate up to 50% per year (i.e., divide the figures in 
the row with r = 25% by 5). In the computer industry that motivates this work, component failure 
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rates tend to be low (e.g., less than 1%) and the warranty duration is on the order of three to five 
years. In these settings, the condition given in (13) is highly likely to hold. 
 
 

r maximum value of  satisfying (13) 
0%  
1% 549% 

10% 331% 
25% 249% 
50% 188% 

100% 131% 
200% 79% 

Table 1. Upper limit on component failure rate  for different net discount rates r. 
 
The following corollary gives the optimal solution for the special case of r = 0. 
 
Corollary 1. If r = 0, then the optimal trade-in fraction is 

  1t e    ,      

the optimal trade-in offer rate is 

 
1

tt e
e




 


    
,                  (15) 

the demand (and supply rate) is 
  d(t) =     tt t e     , 

the total number of units traded in is  
1
2 1q e   ,     

and the optimal cost is  
1
2C =   1 1 we e c       .                (16) 

 
We see that the optimal solution has a simpler structure when r = 0. In particular, the optimal 
trade-in fraction (t) is independent of time. This means that the optimal trade-in discount stays 
constant over the warranty horizon, i.e.,  
 

 t nc t p e   ,                   (17) 

 
(obtained by substituting (t) into (5)). The term in the parentheses in the right-hand side of (15) 
is the fraction of the population exposed to the trade-in offer (i.e., te   is the warranty population 
over time), which also stays constant over the warranty horizon.  
 
In contrast, at r > 0, we see that the optimal trade-in fraction (t) is increasing in time (see (14)), 
and consequently, the trade-in discount is increasing in time (e.g., the firm offers higher 
discounts later in the horizon, which are less costly for the firm due to the positive discount rate). 
Similarly, the fraction of the population exposed to the trade-in offer is decreasing over time. 
 
First-Stage Problem 
 
Under a policy where the final order quantity is set to match total demand, the total cost is 
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1

0 0 0 2
1 1 1 1

0

0.5 1rt
wC c q e h q t nt c nt dt                     (18) 

 
and the final order quantity is  
 

   0
1 1 1 0.5q D n    

 
(see (3) and (8)). We refer to this policy, which is identified by superscript 0, as the benchmark 
policy. The optimal total cost under the matching trade-in program is 
 

      
 

  
1

1 1

1 1 1 1 1
1 1 1 1 2 1 1

0

T q

rt
wC c q e h q D t c d t dt C T q          

where 

      
 

  
1 1

1

1 1
1 1 1 1 2 1 1

0 0

arg min
T q

rt
w

q
q c q e h q D t c d t dt C T q



         
  

 . 

 
Clearly, 1 0

1 1C C  with equality if and only if the optimal second-stage trade-in quantity is zero 

(i.e., 1 0 1
1 1 2 0C C q   ). The following proposition identifies a simple indicator of when it is 

profitable to supplement the final order quantity with a trade-in program.  
 
Proposition 2. If 1

rc e   , then 1 0
1 1C C . 

 
A trade-in program clearly adds value when trade-in potential () is nonnegative (because c1 > 
0). In the event that trade-in potential is negative, we can be assured that trade-in programs 
save money if the present value of the magnitude of the trade-in potential (discounted from the 
end of the warranty horizon) is less than the purchase cost per unit.  
 
Figure 2 illustrates how the final order quantity under the matching trade-in policy differs from 
the benchmark final order quantity. Figure 3 illustrates the percent savings due to the matching 
trade-in policy relative to the benchmark. Note that in figures 2 and 3, a matching trade-in 
program is not used when n = 1 and  = -0.2 (i.e., 1 0

1 1q q ). 
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Figure 2. Optimal final order quantities under the matching trade-in policy as a percent of the 

benchmark final order quantity. The trade-in potential is  = – 0.2 in the left plot and  = 0 in the 
right plot. The other parameter values, which are common to both plots are c1 = 0.2, cw = 0.1, h 

= 0.07, r = 0.  
 

 

  
Figure 3. Percent savings in total cost when the benchmark policy is replaced with the matching 

trade-in policy. The trade-in potential is  = – 0.2 in the left plot and  = 0 in the right plot. The 
other parameter values, which are common to both plots are c1 = 0.2, cw = 0.1, h = 0.07, r = 0.  

 
The left plots of figures 2 and 3 reflect the setting where c1 = - . In this setting, the trade-in 
acquisition cost with the trade-in credit is so low that the cost of a single returned unit is the 
same as the cost from the vendor. This setting is extremely unfavorable to a trade-in program 
and may rarely arise in practice. Nevertheless, even in this unfavorable setting, the trade-in 
policy is less expensive than the benchmark when n = 0. Figure 2 shows that the trade-in policy 
exploits the flexibility of dividing the source of components between the final order quantity and 
those that come from trade-ins. The fraction acquired from the vendor via the final order quantity 
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increases as the failure rate increases. This is because the trade-in cost is sensitive to total 
volume acquired, so a higher fraction of total warranty demand is shifted to the final order 
quantity.  
 
Figure 3 also illustrates that the percentage savings due to the trade-in policy is significant when 
the aggregate failure rate is small, and diminishes as the failure rate increases (i.e., as the 
optimal final order quantity covers an increasing fraction of total demand). However, while 
percentage savings is decreasing in the failure rate, the cost of the benchmark policy is 
increasing in the failure rate. In particular, the total cost of the benchmark policy is proportional 
to the failure rate (see (18)). Depending on parameter values, the absolute savings may be 
either increasing or decreasing in the failure rate. For the parameter values in Figure 3, for 
example, absolute savings is nondecreasing in failure rate except for the matching trade-in 
policy at n = = 0, which is initially increasing, then decreasing.  
 
SUMMARY OF LESSONS FOR MANAGERS 
 
We have considered two policies for a CPOA response. The traditional policy, which we refer to 
as the benchmark policy, is to place a final order that is large enough to cover component 
warranty demand over the remainder of the warranty horizon. An alternative is to be less 
aggressive on the final order quantity and, as component inventory approaches zero, acquire 
additional components through a trade-in program offered to consumers with product under 
warranty. A trade-in offer is made to only a fraction of the warranty population in each period, 
with the fractions adding to 100% by the end of the warranty horizon. The trade-in credit and the 
number of customers who receive the offer in a period are designed to achieve a return 
response that is sufficient to cover the warranty demand in the upcoming period. A matching 
trade-in program is viable for companies with relatively accurate and complete information on 
the warranty population (e.g., customer contact data).  
 
Our analysis leads to two main lessons for managers. First, trade-in programs dominate the 
benchmark policy and have potential to significantly lower cost. Trade-in programs can be 
perceived as a new sourcing option, and therefore, incorporating them into the set of 
alternatives will not increase cost. What is more pertinent for managers are indicators that a 
trade-in program will generate significant savings. The single most important indicator is trade-in 
potential. The value of trade-in potential is the difference between two values: (1) the margin 
from a trade-in transaction, or new-product margin times the probability of a customer not 
purchasing from the firm if not for the trade-in offer, and (2) the reduction in new product price 
required to get at least one customer to participate in the trade-in program. If trade-in potential is 
positive, then the cost of acquiring components via trade-in is negative (at least at low volumes); 
the firm earns money from acquiring a component via trade-in rather than spending money 
buying a component from the vendor. Management should examine the difference between 
trade-in potential and the cost of buying the component from the vendor. These values should 
not be difficult to estimate, and a large difference is a strong indicator of high savings from a 
trade-in program.  
 
A secondary indicator of high savings from a trade-in program is the fraction of the warranty 
population expected to fail prior to warranty expiration. This indicator draws on a more subtle 
value proposition than the difference in cost between a trade-in-sourced unit and a vendor-
sourced unit: a trade-in program reduces warranty claims. Each unit traded in reduces the 
warranty population of the obsolete product, which translates into fewer warranty claims. And 
the higher the failure rate, the greater the reduction in warranty claims.  
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The overarching lesson from our analysis is that the use of a trade-in program to support 
warranty claims should be considered by management. It is surprising to see that the use of 
trade-ins to support warranty claims is not discussed in the industry or academic literature. One 
possible reason is that, relative to the benchmark policy, a trade-in program is more difficult to 
implement, i.e., the firm has to design and communicate the program. However, it is also the 
case that trade-in programs are not unusual in practice. Indeed, there is a wide literature in 
economics and marketing on this topic, and this may hint at the possibility of an organizational 
barrier. Trade-in programs are typically designed and administered by the marketing group for 
marketing reasons (e.g., price discrimination, spur sales when a new generation of a product is 
introduced, etc.). Reducing the cost of warranty claim processing is often outside the mission of 
a marketing department. Our work can motivate firms to lower such organizational barriers. 
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Matching Trade-in Policy Cost for q1 0 
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When r = 0, the expression reduces to 
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Proof of Proposition 1. For this proof, we will not use the normalization of t1 = 0 in order to 
clarify the expressions under a general second-stage starting time t1, expressions that will 
appear in our analysis of the first-stage problem. We initially develop the results for the special 
case of n = 0. We will then show that the optimal solution for this special case remains valid 
when n > 0. 
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Assume n = 0. Let N(t) denote the warranty population at time t. Due to n = 0, we have N(t) = 1 
for all t < t1. The demand and supply rate over time interval [t1, 1] is d(t) = s(t) =N(t) and the 
warranty population function is 
 

  N(t) =        
1 1 1

11 1 1 ,  ,1
t t t

t t t

s x dx d x dx N x dx t t        . 

 
We obtain an explicit expression for N(t) by taking the limit of a discrete-time model as the time 
interval goes to zero. Given time interval  > 0, the failure rate per time interval  is , and we 
have 
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and, in general, for integer i 
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Let t = t – t1 = i. Taking the limit as  approaches zero,  
 

            N(t) =            10 0
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0
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      for t  [t1, 1]. 

 

Thus, d(t) = N(t) =  1t te    for t  [t1, 1]. By substituting  
 

(t) = d(t)/(t) =    1 /t te t                   (19) 

 
into (5), we see that ct(t) is decreasing in (t). Therefore, we replace the inequality constraint 
(11) with equality, and the constraint can be written as  
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and the second-stage problem can be  written as  
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We solve the following equivalent problem 
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but we initially relax the bound constraint (t)  [0, 1] (i.e., unrestricted problem), i.e., we solve  
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After solving the unrestricted problem (22), we identify conditions on parameter values that 
ensure the solution is also optimal for the restricted problem (21). 
 
To simplify notation, we temporarily let t1 = 0 (we account for the impact of t1 > 0 later). We 
define  
 

y(t) =
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Thus, problem (22) is 
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which can be solved using calculus of variations methods. Let y*(t) denote the optimal function. 
We express y(t) in terms of parameter a, y*(t), and difference function h(t), i.e.,  
 

y(t) = y*(t) + ah(t)   
 

and thus y(t) = y*(t) + ah(t). For any feasible y(t), we must have h(0) = h(1) = 0 (i.e., in order to 
satisfy the boundary conditions, which are clearly satisfied by the function y*(t)). Let 
 

g(a) =          
1 1

112 2 *

0 0

' ' 'r t r te y t dt e y t ah t dt           .   



Cole et al. Satisfying Warranty Claims on an Obsolete Product

 
 
 
Note that  
 

g(a) =        
1

22 *

0

' ' 'r te y t ah t h t dt       .            (25) 

Applying integration by parts and recognizing 
1

0
uv = 0 due to h(0) = h(1) = 0, we have 

 

g(a) =         
         

 
2*1

2

3* *
0

2 ' ' 2

' ' " "

r t
r y t ah t

e h t dt
y t ah t y t ah t






 



   
      

 .  

 
Since y*(t) is optimal, we can conclude that for any h(t) (with h(0) = h(1) = 0), we must have g(0) 
= 0. This implies that the integrand of the above (with a = 0) must be equal to zero at all values 
of t, i.e., we must have 
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Solving the differential equation, we get 
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where A is obtained from the boundary condition, i.e., 
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The function  * 'y t  is a unique extremal (i.e., no other function yields g(0) = 0). Taking the 

derivative of (25) and evaluating at a = 0, we get 
 

g(0) =      
1

3 22 *

0

2 ' 'r te y t h t dt         .  

 
Since y*(t) > 0 for all t  [0, 1], it follows that g(0) > 0, and thus  * 'y t solves (24).  

 
Substituting (26) into (23) yields optimal trade-in fraction 
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and accounting for t1 > 0 yields optimal trade-in fraction for the unrestricted problem 
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Recall that the difference between the unrestricted problem and the restricted problem is that 
the restricted problem includes the constraint (t)  [0, 1]. From (27) we see that (t) is 
increasing in t and (t1)  [0, 1]. Thus, if (1)  1, then the optimal solution to the unrestricted 
problem is also optimal for the restricted problem. Note that  
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Thus, (t)  [0, 1] if and only if (28) holds. The optimal trade-in offer rate is obtained by 
substituting (27) into (19) and solving for (t), the trade-in quantity is obtained from 
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q t t dt   , and the optimal cost is obtained by substituting the optimal acceptance rate 

and trade-in offer rate functions into the cost function: 
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In the preceding, we derived the optimal solution under the assumption that n = 0. We next 
show that the solution is also optimal when n > 0. Note that warranty population at the beginning 
of the second stage when the trade-in program goes into effect is 1 – nt1. Adapting the solution 
in (29) to account for the fact that a total 1 – nt1 are made during the second stage, we get  
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i.e., due to our normalization of the population size to 1, (29) gives the optimal fraction of the 
warranty population that receives the trade-in offer over time.  
 
If n > 0, then it is conceivable that some warranties will expire during the second-stage prior to a 
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customer receiving a trade-in offer. If such a scenario cannot occur under the optimal trade-in 
offer rate given in (30), then the preceding analysis continues to apply. Indeed, as we show 
below, this is the case.  
 
According to solution (30), the total number of trade-in offers during interval [t1, t] is 
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Observe that f(t) is a concave increasing function over the interval [t1, 1] with f(t1) = 0 and f(1) = 
1 – nt1. If there was no trade-in policy, the total number of warranties that would expire during 
interval [t1, t] is 
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Thus, f(t)  g(t) for all t  [t1, 1], i.e., no warranties expire during the second stage prior to receipt 
of a trade-in offer. Therefore, the structure of the optimal solution for the case of n = 0 holds for 
the case of n > 0, through the expressions for (t), 1

2q , and 1
2C are generalized to account for the 

lower warranty population at the start of the second stage: 
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Proof of Proposition 2. The unit acquisition cost under a trade-in program with acceptance 
rate  is c2 =  –  (see (7)), and the acquisition cost at the origin ( = 0)  is c2 = –. Compared 
to the benchmark, trade-in programs result in lower inventory and fewer total warranty claims. 
Thus, a necessary condition for 1

2 0q  , is c1  –e-r (i.e., the firm cannot reduce acquisition cost 
by acquiring product at the end of the warranty horizon via a trade-in), and the contrapositive of  
 
  1

2 10 rq c e      
is  
  1

1 2 0rc e q    .   


