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We investigate a problem faced by a durable-goods manufacturer of a product that is no longer 
manufactured but still under warranty. A supplier announces that a component of the product will be 
phased out and specifies a deadline for the final order. A common response in traditional practice is to 
place a final order sufficient to cover future warranty claims. We analyze and compare this policy with 
two policies that use trade-in programs to supplement the final order quantity: (i) A full trade-in policy 
where the firm issues a one-time offer to the entire population that has the product under warranty, and 
(ii) a matching trade-in policy where the firm issues a trade-in offer to a fraction of the warranty 
population in each period.  
 
Our analysis of a deterministic model leads to two main conclusions. First, we find that the savings from 
the use of a trade-in program can be significant, and we identify easy-to-estimate measures that drive the 
magnitude of savings. Second, we find that a full trade-in policy is likely to be preferred over a matching 
trade-in policy. The policy is also easier and more practical to implement. However, if uncertainty in 
warranty demand is introduced, then a firm may benefit by combining elements of both policies – an 
initial offer to a sizable fraction of the warranty population followed by periodic offers to remaining 
segments over time. 
 
Keywords: inventory management; reverse logistics 

 
 

1. Introduction 

We investigate a problem faced by a durable-goods manufacturer of a product that is no longer 

manufactured but still under warranty. A supplier announces that a component of the product will be 
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phased out and specifies a deadline for the final order. The manufacturer projects the component needs 

for the product under warranty and considers a two-stage decision problem: (i) the size of the final order 

and, in the event that the final order is less than actual requirements, (ii) the design of a trade-in program 

for component harvesting.  

The importance and prevalence of this problem have increased over time due to shrinking product 

life-cycles and growth in outsourcing. These trends are especially pronounced in the computer industry 

where the high pace of change and technical challenges favor supply chains of independent firms with 

specialized expertis. Indeed, our motivation for this study comes from our discussions with management 

at a computer manufacturer. The following is a description of the problem by a manager at the firm. 

What we are doing today for warranty parts is we place an end-of-life buy. The supplier 
will come to us and say okay, in the next three months we are going to stop producing 
this part forever, how many do you want? Now typically we would have three to five 
more years’ worth of warranty life that we have to cover for that part when the buyer 
comes to tell us that. So we then run it through a series of parts planning tools that tells 
us the demand we will have for that part over the remaining service life, and we assign a 
service level to that. But naturally considering that it is warranty coverage and we know 
we can't get the part again, we have to be pretty conservative of how we place that buy. 
So, by definition, we over purchase on that end-of-life buy. A thought is that if we had 
something in place such that in those situations where demand for warranty parts ends 
up greater than we thought, if in those situations we can go out to the install base and 
proactively identify those units that we would like to have back. We could offer the 
current customer a very good deal on an upgrade and get those systems back and then 
tear them down. 

 
We consider the setting where the component phase-out announcement (CPOA) occurs after the 

manufacturer has discontinued manufacturing and sales of the parent product. The phased-out component 

contributes significantly to the value of the product and is not easily or inexpensively obtained from 

alternative suppliers (e.g., highly engineered and expensive component). These features elevate the 

importance of managerial attention on an effective response to the CPOA. We investigate how a firm’s 

optimal final order quantity and trade-in program decisions are influenced by industry and market 

characteristics.  

Our main contribution lies in three observations that come from our analysis. First, a trade-in program 

has potential to significantly reduce a firm’s warranty liability. To the best of our knowledge, the use of 

trade-in programs to support warranty claims has not been considered in the literature. Second, there are 

two key indicators that savings from a trade-in program will be significant. One indicator is the difference 

between the component cost and the marginal cost of the first unit acquired via trade-in. A second 

indicator is the expected fraction of products under warranty that will fail. Both of these values should not 

be difficult for a firm to estimate. Third, we consider two types of trade-in programs and offer guidance 
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on when a particular program is likely to be preferred.  

2. Elements of the Component Phase-Out Announcement Problem 

As a new generation of a component is introduced and the volume of the previous generation declines, a 

supplier eventually ceases to supply the older generation component and announces a time-line for phase 

out. While it is possible that a CPOA may occur when the manufacturer is still producing a product with 

the component, we limit consideration to the case where the product is no longer being manufactured. 

Thus, the final component purchase decision is driven by warranty obligation considerations. Durable-

goods manufacturers commonly offer a limited-time warranty to consumers. Dell, for example, provides a 

replacement warranty on their PCs. Each computer is sold with Dell’s Basic Service Plan, which includes 

a minimum of 12 months of warranty coverage. The plan covers all Dell-branded component parts. A 

consumer can extend the basic service plan for up to four additional years by paying a fee at the time of 

purchase.  

The CPOA problem can be viewed as a two-stage decision problem. The first-stage decision is the 

number of components in the final order. After the final order is placed, component demand is realized 

over time. The second-stage decision, if necessary, is the price discount to be offered on a trade-in. The 

second-stage decision is required if or when component supply approaches zero, in which case the firm 

announces a trade-in program that is open to customers with product under warranty.  

In some settings, the firm may have access to customer-specific warranty data. In these settings, the 

trade-in offer can be targeted to specific customers based on product age and time remaining under 

warranty. In settings where these data are not available, a firm can announce a limited-time trade-in offer 

for product under warranty to the general public. We consider both settings in our analysis.  

A firm interested in component harvesting could offer a buyback program instead of a trade-in 

program. Buyback programs offer money for used product without the requirement that the consumer 

purchase a new product from the firm. While we use a trade-in program as the setting of our model, as 

shown in the online appendix, a buyback model has the same structure. We describe how relevant 

parameters are affected by a buyback program. All of our results continue to hold if the relevant trade-in 

parameters are replaced by the corresponding buyback parameters. 

3. Related Literature 

Most consumer durables come with either a pro-rata refund or a free repair/replacement warranty policy 

(Blischke and Murthy 1992, Yeh and Fang 2015). Murthy et al. (2004) provide a comprehensive review 

of various issues associated with warranty management. Warranty claims are driven by the warranty 

population, usage characteristics, product reliability, and warranty terms. Seitz (2007) reports that the use 

of recovered components to satisfy warranty claims is a common practice in the automobile and home 
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appliance industries. Cisco began using returns to support warranty claims in 2008. The initiative 

increased the recovered value from returns by nine-fold, from 5% to 45% (Nidumolu et al. 2009). 

There are two streams of research related to our two-stage problem of how a manufacturer determines 

the size of the final order and designs the trade-in program for component harvesting. One stream, which 

is related to our second-stage problem, considers the relationships between new product prices, trade-in or 

buyback prices, product return volumes, and new product purchases (e.g., Guide and Van Wassenhove 

2001, Ray et al. 2005, Bakal and Akcali 2006). Our work differs from this literature by including a first-

stage decision on the final order quantity. In addition, this literature focuses on returns to support the 

remanufactured product demand, not warranty claims. As a consequence, a key distinctive feature of our 

problem is that each returned unit reduces the size of the install base thereby reducing the demand of 

warranty claims in the future. This dynamic is not present in the existing literature on trade-in and 

buyback programs. 

A second stream considers the challenge of covering component demand after a CPOA. Much of the 

work in this stream addresses the final order quantity problem in isolation, which corresponds to our first-

stage problem (e.g., Fortuin 1980, Teunter and Hansveld 1998, Teunter and Fortuin 1999, Bradley and 

Guerrero 2009, van der Heijden and Iskander 2013). Most of the papers in this stream apply to a setting 

where the returns do not affect future demand for the component. There are a few papers where return 

volume affects future demand, which is a characteristic of our problem (e.g., Krikke and van der Laan 

2011, Pourakbar et al. 2014). The models in these papers include a linkage between product replacement 

and future demand of the component due to removal of an obsolete product from the population. 

However, return volume is exogenous as the firm passively accepts returns.  

One paper that treats return volume as endogenous and that links return volume to future demand, as 

in this paper, is Kleber et al. (2012). They consider an OEM managing inventory of a component subject 

to a CPOA. The component is used to repair broken machines for a fee under a service contract. Each 

failure yields a nonfunctioning component that, if repairable, can be repaired for use in a future machine 

failure. They formulate the problem as a deterministic mixed-integer linear program. They use numerical 

analysis to assess the value of supplementing a final order quantity with machines acquired from 

customers that can be harvested for components. The authors suggest that future research should examine 

structural properties of optimal solutions via optimal control methods. Our paper deals with a different 

setting where returns are from consumers with product under warranty and in working order. However 

our problem does share three basic features: (i) a final order decision, (ii) endogenous returns, and (iii) 

return volume affecting future demand for components. While we also consider a deterministic model, 

our modeling approach is distinct; we use optimal control (and other analysis) methods to obtain 
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structural properties of optimal solutions pertaining to two strategies for the timing and quantity of returns 

to supplement the final order quantity. Our structural properties expose key factors that govern the 

attractiveness and the form of trade-in programs to support warranty claims. 

4. Models and Analysis 

We begin by presenting a model of the CPOA problem. The model includes a policy-dependent second-

stage cost function. Section 4.1 contains optimal decisions and cost functions for two second-stage trade-

in policies. Section 4.2 characterizes the optimal first-stage decisions and costs under each of the second-

stage policies. Proofs and derivations are located in the online appendix. 

A firm has received a CPOA for a component from a sole-source supplier and must determine the 

final order quantity q1 that will be received at time t = 0. The purchase cost per unit is c1, the inventory 

holding cost rate is h, and the warranty claim service cost per unit is cw (e.g., disassembly, component 

replacement, reassembly, test, and shipping). The difference between the firm’s discount rate and the rate 

of inflation in operating costs and margin is r. The last warranty expires at time t = 1 (i.e., the unit of time 

is selected so as to normalize the warranty liability horizon to one period). 

The component demand rate at time t (due to warranty claims) is d(t), the cumulative demand through 

period t is D(t) =  
0

t

d x dx . The component demand rate is net of any passive returns of product 

containing a working component. We assume deterministic demand and focus on identifying the drivers 

of performance in this setting. In Section 4.3 we discuss the impact of uncertainty on our conclusions. 

We let T1(q1) denote the time that component inventory from the final order reaches zero, or the end 

of the warranty horizon, whichever is smaller, that is,  

T1(q1) =    1min min | ,1t D t q   

The total cost to service warranty claims is  

      
 

  
1 1

1 1 1 1 1 2 1 1

0

T q

rt
wC q c q e h q D t c d t dt C T q                   (1) 

where C2(t) is the cost of satisfying warranty claims over time interval [t, 1] given that the final order 

quantity runs out at time t. The first term in (1) is the component purchase cost of the final order of q1 

units. The second term in (1) is the inventory holding and warranty claim servicing cost, of which the 

parenthetical term in the integrand is the inventory at time t that is assessed a holding cost rate h. 

4.1 Second-Stage Trade-in Policies 

We consider two trade-in policies for servicing warranty claims. A firm offering a trade-in program 

specifies the discount off the purchase price of a new model if the customer returns the old model. For 
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both policies, the trade-in credit is offered only to customers with product under warranty. Conceivably a 

firm could offer the trade-in discount to a customer with a product that is no longer under warranty. While 

such a customer might be willing to trade-in for a lower discount, the tactic of offering a trade-in discount 

for product not under warranty has two drawbacks. First, there is a risk that the component in the returned 

product will be faulty. This risk is low for product under warranty because, if it was faulty, the firm would 

have likely already received a claim. Second, the return of a product under warranty reduces the firm’s 

warranty liability associated with the obsolete component (i.e., the product containing the obsolete 

component is traded in for a new model of the product). 

In one policy, which we call a full trade-in policy, the firm launches a time-sensitive promotion to the 

entire warranty population. The firm only provides a trade-in credit for units returned during a valid offer 

period. For example, HP offers featured, time-sensitive promotions on certain product categories (e.g., 

earn a trade-in credit for HP Designjet T1300 between August 1 and October 31). The trade-in discount 

under this policy is set so that total component supply matches total warranty demand. 

An alternative to a one-time trade-in offer to the entire population is to offer a time-sensitive trade-in 

to some fraction of warranty holders in each period so as to match the rate of supply with the rate of 

demand. We refer to this policy as a matching trade-in policy. A matching trade-in policy is only viable in 

settings where the firm has access to customer-specific warranty data (i.e., customer contact information 

for products under warranty). Firms that sell directly to customers are likely to have this level of detail in 

warranty data, whereas this level of detail is less likely for firms that sell through retail outlets (e.g., 

warranty registrations are made available to consumers who purchase through retail outlets, but not all 

consumers fill out and return this information).  

Before analyzing the two trade-in policies, we describe how we model relationships between the 

trade-in discount, trade-in volume, and trade-in cost. We begin with two assumptions that allow us to 

define the fraction of customers who accept a trade-in offer as a function of the trade-in discount:  

Assumption 1 (A1). A customer receiving a trade-in offer receives a single take-it-or-leave-it offer and 

accepts the offer if consumer surplus is positive.  

Assumption 2 (A2). The valuation of the new model in exchange for the old model under warranty, 

denoted V, is independent of time and is uniformly distributed and ordered by age of ownership with 

range normalized to [0, 1]. 

An alternative to A1 is to allow multiple trade-in offers to the same customer over time. However, 

this promotes strategic behavior that greatly complicates the analysis and may work against the interest of 

the firm (e.g., customer holds out for a better offer). Uniformly distributed valuation (A2) is common in 

the literature (e.g., Mussa and Rosen 1978, Purohit and Staelin 1994) and results in return volume that is 
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linear in price. A2 also specifies that a consumer who recently purchased the product will have a higher 

valuation than a consumer who has owned the product for a longer period of time (i.e., customers with 

older product will accept a lower trade-in offer than customers with newer product). 

A firm offering a trade-in program must select the trade-in discount and the rate at which customers 

are exposed to the trade-in offer (i.e., the trade-in offer rate), both of which may vary with time. The 

trade-in discount is ct(t) and the trade-in offer rate is (t) (e.g., (t) is the number of customers receiving a 

trade-in offer in period t). The contribution margin of a new model of the product is m and the variable 

cost is cn (i.e., the new model selling price is pn = cn + m). Thus, the trade-in price is cn + m – ct(t) and, by 

A1 and A2, the fraction of customers who accept the trade-in offer from among those who receive it is  

         – 1– – 1n t n t t nt P V c m c t c m c t c t p            .       (2) 

Rewriting (2) in terms of the trade-in credit,  

    – 1 –t nc t p t .                  (3) 

We see that the trade-in price is the complement of the acceptance rate (t), that is,  

     – 1 –n tp c t t . 

Note that the new model selling price should be more than the maximum valuation of a trade-in exchange, 

that is,  

1n np c m   .                    (4) 

Condition (4) reflects the practical reality that customers are unlikely to trade in a product under warranty 

unless there is a trade-in discount. For example, pn < 1 would imply that fraction 1 – pn of customers 

would be willing to return their product (that is under warranty and functional) and pay full price for the 

new model. 

The value of pn – 1 is a measure of trade-in resistance. This value is the minimum trade-in discount 

that is required before any customers will be willing to return their unit. The larger the value of pn – 1, the 

greater the market resistance to a trade-in offer, and therefore, the firm is pressured to increase its trade-in 

offer with a higher value of ct(t). 

In (2), we see that the difference between the trade-in credit, ct(t), and the trade-in resistance, pn – 1, 

gives the fraction of those receiving the trade-in offer who accept the offer. Thus, the product return rate 

s(t) is  

            1t ns t t t c t p t         . 

In general, the specification of trade-in acquisition cost can be challenging due to the effect of 

cannibalization. We model this effect through parameter . The interpretation of  is relatively 
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straightforward when the difference between the firm’s discount rate and the rate of inflation (in costs and 

margin) is zero (i.e., r = 0):  is the fraction of trade-in customers who would have purchased the new 

model at full price in the future if the trade-in program was not offered, or repeat purchase rate. If r > 0, 

then the value of the full margin in the future is lower due to the time-value-of-money. All time-value-of-

money effects and, more generally, all cannibalization effects are incorporated into the value of parameter 

. Indeed, it is possible for  to be negative in some settings (e.g., by reducing secondary market supply 

and thus cannibalization of new product sales). Accordingly, the cost of a component obtained through a 

trade-in is the reduction in margin through a trade-in sale, which is  

       2 – 1tc t c t m t                      (5) 

where  

   = (1 – )m – (pn – 1).    

We refer to the value of  as the trade-in potential, which can be interpreted as the difference between 

the gain from locking-in disloyal customers via the trade-in offer, (1 – )m, and the market resistance to a 

trade-in offer, pn – 1. More generally,  is the marginal profit on trade-in volume at the origin. For 

example, if  > 0, then trade-in potential is positive and trade-ins are profitable up to acceptance rate (t). 

On the other hand, if  < 0, then trade-in potential is negative and trade-ins are costly from the get-go. 

Without loss of generality, we define the product unit such that the warranty population at time zero 

is 1. In the absence of a trade-in program, the rate at which warranties expire at time t is given by n(t), 

which is known with certainty (e.g., obtained from company records). While n(t) can conceivably take 

any functional form, in the interest of parsimony, we limit consideration to the following form that 

depends on a single parameter, n  [0, 1]: 

  n(t) =
,       1

1 ,  1

n t

n t


  

, 

i.e., warranties expire at rate n over time interval [0, 1) and 1 – n warranties expire at time t = 1. The case 

of n = 1 reflects a setting where monthly sales of the product is relatively flat near the end of its life-cycle 

(e.g., warranty expires x months after purchase). The cases of n < 1 reflect settings where monthly sales 

of the product is relatively flat near the end of its life-cycle except for a jump in sales at the end through 

clearance pricing. The smaller the value of n, the larger the clearance sale volume relative to volume prior 

to clearance discounting.  

With the warranty population characterized, the remaining contributor to demand for components to 

service warranty claims is the component failure rate. We assume deterministic failures and focus on 

identifying the drivers of performance in this setting. We assume that the failure rate is constant at value 
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. This assumption is common in the literature (e.g., Murthy and Rodin 1990, Zhou et al. 2009). 

Assumption 3 (A3). The component failure rate is constant.  

Due to A3, in the absence of a trade-in program, the demand rate is d(t) = (1 – nt). The cumulative 

and remaining demand functions are 

D(t) =  
0

t

d x dx =    
0

1 1 0.5
t

nx dx t nt                 (6) 

           1 1 1 0.5 1D t D D t t n t         . 

In both expressions, the term in brackets reflects the degree to which cumulative demand and remaining 

demand are reduced when the warranty expiration rate n is greater than 0. 

 We note that a returned unit may contain some value beyond the component that has been phased out. 

This value can be incorporated into our model as an additional parameter that does not change the 

structure of the model or the results. In the interest of parsimony, we do not introduce a separate 

parameter; its value, if significant, is included in parameter m (e.g., if margin is m and savings generated 

from other components in a returned product is s, then m = m + s/(1 – )). 

We are now ready to present results for the full and matching trade-in policies. To simplify notation, 

we assume T1(q1) = 0 in our presentation of second-stage results. The function T1(q1), which captures the 

dependency of the second-stage duration on the value of q1, will enter into our analysis of the first-stage 

decisions and costs (see the online appendix for the derivation of second-stage cost expressions that allow 

for T1(q1) > 0).  

4.1.1 Second-Stage Policy 1: Full Trade-in Policy 

The firm offers a trade-in opportunity to the entire warranty population (population size = 1) at time t = 0. 

Let q2 denote the number of units that are traded in. At time t = 0, the warranty population is reduced 

from 1 to 1 – q2. Due to A2 that implies that the oldest products under warranty are returned, no 

warranties expire until time  

t = tx  min{q2/n, 1},  

at which point, warranties begin to expire at rate n until the end of the warranty horizon. Consequently, 

the demand rate is 

d(t) =
 

  
2

2

1 ,                   

1 ,  

x

x x

q t t

q n t t t t





  


   
                (7) 

and the total demand is 

   D(1) =   2

21 0.5 1 xq n t    . 
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Setting supply equal to demand and solving for q2 yields the return quantity under the full trade-in policy: 

 
1

1/222

,                                 
1 1

2 ,  
1

n

q
n n

n n n

 
 


  

                

             (8) 

(we use a superscript throughout to denote the trade-in policy in effect, that is, superscript 1 refers to the 

full trade-in policy and superscript 2 refers to the matching trade-in policy).  

Recall that (0) is the fraction of customers who accept the trade-in offer from the population who 

receive the offer. For a full trade-in program, this fraction is the same as 1
2q ; we obtain the trade-in 

discount by substituting 1
2q  = (0) into (3): 

1 1
2 1t nc q p   .                              (9) 

Substituting (9) into (5) yields the trade-in cost per unit: 

 1 1 1
2 2 21 nc q c m q       .                (10) 

Thus, the second-stage cost under a full trade-in policy is  

      
1

1 1 1 1
2 2 2 2

0

rt
wC c q e h q D t c d t dt       . 

If n  /(1 + ), then the second-stage cost can be expressed rather simply: 

  
2

1
2

1

1 1

1r r

w

e r e
C c h

r r
 

 

             


 
 

      
, 

which reduces to  

1
2 21 1 w

h
cC  

 
 

 
          

               (11) 

when r = 0. For the case of n > /(1 + ), the cost expressed in terms of the parameters is very complex 

and is not illuminating.  

4.1.2 Second-Stage Policy 2: Matching Trade-in Policy 

The firm sets the trade-in credit ct(t) and the trade-in offer rate (t) so that component supply matches 

component demand over the remainder of the warranty horizon, that is,  

       s t t t d t                       (12) 

where (t) = ct(t) –   is the trade-in acceptance rate among those customers exposed to the trade-in offer 

at time t (see (2)), or the trade-in fraction. Note that (t) must be a valid fraction, that is,  

(t)  [0, 1],                    (13) 
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and that a customer receives a trade-in offer no more than once (see A1), that is,  

 
1

0

1t dt  .                    (14) 

The firm’s choice of customers who will receive the trade-in offer over time is influenced by A2. 

Recall that A2 implies that customers with a soon-to-expire warranty are more likely to accept a trade-in 

offer than customers with a more distant warranty expiration date. In recognition of A2, the firm sends the 

trade-in offer to customers in order of warranty expiration date.  

From (5), the component acquisition cost rate for the matching trade-in policy is 

 2
2c t =    1nt c m t        .              (15) 

Thus, the cost of the matching trade-in policy is 

        
1

2
2

0

, rt
wC e t c d t dt        

where functions (t) and (t) satisfy (12) – (14). We wish to find the function (t) that minimizes the 

second-stage cost subject to the relevant constraints. The problem is  

  
   

            
1 1

2
2 0,1

0 0

min : , 1rt
wt

C e t c d t dt t t d t t dt


    



       
  
  . 

The following proposition characterizes the optimal solution to the preceding problem. 

Proposition 1. If  

0.5 1 1
2

r r
e e 


     

 
,                  (16) 

then the optimal trade-in fraction is 

 
  0.5 0.51

0.5

r rte e
t

r






 



,                 (17) 

the optimal trade-in offer rate is 

   
 

0.5

0.5

0.5

1

rt
t

r

r e
t e

e










 

 
    

,           

the demand (and supply rate) is 

  d(t) =     tt t e     , 

the total number of units traded in is  

2
2 1q e   ,               

and the optimal second-stage cost is   
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2
2C =

     0.5 0.51 1

0.5

r r

w

e e
c

r r

  


 

        
      
     
     

.     

Table 1 shows the maximum value of the failure rate  that satisfies condition (16) for various values 

of the net discount rate r. Recall that  is the failure rate over the duration of the second stage. For 

example, if the second-stage duration is five years and the net annual net discount rate is 5%, then 

condition (16) holds for a failure rate up to 50% per year (i.e., divide the figures in the row with r = 25% 

by 5). In the computer industry that is motivating this work, component failure rates tend to be low (e.g., 

less than 1%) and the warranty duration is on the order of three to five years. In these settings, the 

condition given in (16) is likely to hold. 

r maximum value of  satisfying (16) 
0%  
1% 549% 

10% 331% 
25% 249% 
50% 188% 

100% 131% 
200% 79% 

Table 1: Upper limit on component failure rate  for different net discount rates r. 
 

The following corollary gives the optimal solution for the special case of r = 0. 

Corollary 1. If r = 0, then the optimal trade-in fraction is 

  1t e    ,      

the optimal trade-in offer rate is 

 
1

tt e
e




 


    
,                  (18) 

the demand (and supply rate) is 

  d(t) =     tt t e     , 

the total number of units traded in is  

2
2 1q e   ,     

and the optimal cost is  

2
2C =   1 1 we e c       .                (19) 

We see that the optimal solution has a simpler structure when r = 0. In particular, the optimal trade-in 

fraction (t) is independent of time. This means that the optimal trade-in discount stays constant over the 

warranty horizon, that is,  
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 t nc t p e   ,                   (20) 

(obtained by substituting (t) into (3)). The term in the parentheses in the right-hand side of (18) is the 

fraction of the population exposed to the trade-in offer (i.e., te   is the warranty population over time), 

which also stays constant over the warranty horizon.  

In contrast, at r > 0, we see that the optimal trade-in fraction (t) is increasing in time (see (17)), and 

consequently, the trade-in discount is increasing in time (e.g., the firm offers higher discounts later in the 

horizon, which are less costly for the firm due to the positive discount rate). Similarly, the fraction of the 

population exposed to the trade-in offer is decreasing over time. 

4.1.3 Comparison of Second-Stage Trade-in Policy Performance 

We begin by identifying and describing four factors that interact to influence the relative performance of 

full and matching trade-in policies. These four factors are: (i) the number of warranty claims, (ii) the 

component inventory level, (iii) the trade-in potential, and (iv) the discount factor.  

First, relative to the matching trade-in policy, the full trade-in policy has the advantage of fewer 

warranty claims, that is,  

1 2
2 21

1
q e q


   


                  (21) 

(follows from e-x < (1 + x)-1 for all x > 0). For both policies, the total number of trade-in units is equal to 

the total warranty claims during the second stage. Warranty claims are lower for the full trade-in policy 

because the warranty population is reduced at a single time instant t = 0, and any unit removed from the 

warranty population eliminates a possible future warranty claim on the obsolete product. In contrast, the 

matching trade-in policy reduces the warranty population gradually over the entire warranty horizon. The 

difference, 2 1
2 2q q , is increasing in  (up to   250%) and n, and the cost advantage to the full trade-in 

policy from this difference is increasing in the warranty service cost rate cw. Figure 1 illustrates the 

warranty claims under full and matching policies over different values of  and n. 
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Figure 1: Warranty claims under full and matching trade-in policies for different values of failure rate  
and warranty expiration rate n.  
 

The second factor that influences the relative performance of full and matching trade-in policies 

pertains to the component inventory level. The matching trade-in policy has the advantage of no 

component inventory during the second stage whereas the average second-stage inventory under a full 

trade-in policy is  

   
1

1 1
2

0

I q D t dt  , 

which for the case of n  /(1 + ), reduces to  

  
 

1

2 1
I







  

(see (7) and (8)). The value of 1I is increasing in  and decreasing in n, and the cost advantage to the 

matching trade-in policy from this inventory difference is increasing in the inventory holding cost rate h.  

 The third factor is the trade-in potential,, which interacts with trade-in volume to influence which 

policy results in lower acquisition cost. Recall that the full trade-in policy results in fewer warranty 

claims, and equivalently, lower trade-in volume. Depending on the value of the trade-in potential, lower 

trade-in volume can result in lower or higher acquisition cost. For example, when the trade-in potential is 

sufficiently positive to the point where the firm makes money on each trade-in, then the higher volume of 

the matching policy can be beneficial. The total acquisition cost under the two policies is 

   1 1 1 1 1
2 2 2 2 2c c q q q    



15 
 

     
1

2 2
2 2

0

rtc e c t d t dt  =

     
2

0.51
1

0.5

r

r
e

e
r r




 

 

 

 
          
 

 

(see (10), (15), and (17)). For the special case of r = 0 and n  /(1 + ), the total acquisition cost  

expressions reduce to  

  1
2 1 1

c
  
 

        
 

    2
2 1 1c e e       , 

and we have  

  2 1
2 2  if and only if 1

1
c c e 


   


  

(note that 1 2
2 21 0

1
e q q


    


). Figure 2 illustrates the boundary curves delineating the regions 

where 2 1
2 2c c  and where 2 1

2 2c c  on the (, ) axis for different values of n and r. The matching trade-in 

policy tends to be favored when the failure rate is low ( is small) and trade-ins are profitable (trade-in 

potential is large). In this setting, the fact that there are more trade-ins under the matching trade-in policy 

is an advantage. The right plot of Figure 2 for the case of n = 0 shows that the matching trade-in policy 

results in a lower acquisition costs when both the failure rate and the trade-in potential are small. The 

reason for this phenomenon relates to the fourth factor that influences the relative performance between 

the policies.  

   
Figure 2: Boundary between lower acquisition cost under the matching trade-in policy ( 2 1

2 2c c ) and 

lower acquisition cost under the full trade-in policy ( 2 1
2 2c c ) for different values of warranty expiration 

rate n. The net discount rates in the left and right plots are r = 0 and r = 10%, respectively. 
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 The fourth factor is the net discount rate r. The net discount rate plays a subtle role in relative policy 

performance. Whether a high (or low) value of r favors the full trade-in policy or the matching trade-in 

policy depends on multiple parameters. Inventory holding costs are incurred continually during the 

second stage under a full trade-in policy whereas there is no inventory holding cost under a matching 

trade-in policy. Consequently, an increase in r tilts relative performance in favor of the full trade-in policy 

through its dampening effect on holding cost. On the other hand, the full trade-in policy incurs the entire 

acquisition cost at time t = 0 and this cost is unaffected by changes in r. Acquisitions are spread out over 

time under the matching trade-in policy and, while the acquisition rate over the second stage is affected 

by changes in r, the magnitude of the acquisition cost is reduced due to discounting. Thus, if acquisition 

costs are positive (negative) under both policies, then an increase in r tilts relative performance in favor of 

the matching (full) trade-in policy. We see an illustration of this effect in Figure 2. For example, consider 

the case of r = 0 (the left plot in Figure 2). It follows from  1 1 1
2 2 2c q q   ,  2 2 2

2 2 2c q q   , and 1 2
2 2q q  

that  

  2 1 1
2 2 2 0c c c   , 

i.e., acquisition cost under both policies is negative when the acquisition cost under the matching trade-in 

policy is less than the acquisition cost under the full trade-in policy. Now consider the impact of the 

change from r = 0 (left plot) to r = 10% (right plot). For the case where warranties expire during the 

warranty horizon (i.e., n = 0.5 and n = 1), we see that the region of 2 1
2 2c c  slightly shrinks (at each value 

of ) when r increases from 0 to 10%. The case where all warranty expirations occur at the end of the 

warranty horizon (n = 0) presents a different story. The full trade-in policy is more attractive at positive 

values of  because all profits from trade-ins are realized at time zero instead of being discounted as 

realized throughout the warranty horizon. The discounting effect that works against the matching trade-in 

policy at  > 0 becomes an advantage when  < 0. This is illustrated in the region of 2 1
2 2c c  that appears 

in the lower left of the right plot in Figure 2. If the discount rate is high enough for the cases of n = 0.5 

and n = 1, we see similar behavior where the full trade-in policy has a lower acquisition cost for  > 0 and 

the matching trade-in policy has a lower acquisition cost at low failure rates for  < 0 (e.g., for n = 0.5, the 

shift in regions occurs at r  60%, and for n = 1, the shift in regions occurs at r  160%).  

 In order to expose how various factors interact to affect policy preference, consider the case of  

r = 0 and n  /(1 + ). By comparing the expressions for 2
2C  and 1

2C  (see (11) and (19)), it follows that 

policy dominance is defined by the following: 
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  2 1
2 2C C  if and only if

2 2
2 2
1 1
2 2

2 1 1 w

q q
h c

q q


   
       

   
  

where 
  2

2
1
2

1 1eq

q

 



 
 .  

Figure 3 illustrates the regions of preference for the two policies on the (,  – cw) axis for different 

values of h when r = 0 and n  /(1 + ). The figure shows the expanding preferred region of the 

matching trade-in policy as the inventory holding cost rate increases. 

 
Figure 3: Boundary between lower total cost under the matching trade-in policy ( 2 1

2 2C C ) and under the 

full trade-in policy ( 2 1
2 2C C ) for r = 0 and n  /(1 + ) and different values of inventory holding cost 

rate h. The vertical axis is ‘trade-in potential less warranty service cost’ (i.e.,  – cw). 
 

When r > 0 and/or n > /(1 + ), the inequality 2 1
2 2C C  expressed in terms of parameters is complex 

and is not illuminating. However, the effects of increasing r and n have been exposed in the discussion of 

figures 1 and 2. To recap, an increase in the warranty expiration rate n has no impact on the matching 

trade-in policy, whereas an increase in n beyond the threshold /(1 + ) generally benefits the full trade-

in policy (i.e., by reducing the number of warranty claims and trade-ins). If the profit on a trade-in more 

than covers the warranty processing cost, then it is possible that an increase in n will decrease the 

attractiveness of the full trade-in (by reducing the profit). An increase in the discount rate benefits the full 

trade-in policy by reducing the inventory holding cost; the discount rate has no impact on inventory 

holding cost under the matching policy because there is no inventory. The full trade-in policy incurs all 

costs associated with acquisition at the beginning of the second-stage, and thus this cost is not affected by 

increases in the discount rate. The matching trade-in policy defers acquisition costs and thus benefits from 
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increases in the discount rate. 

4.2 First-Stage Problem 

Under a policy where the final order quantity is set to match total demand, the total cost is 

    
1

0 0 0 2
1 1 1 1

0

0.5 1rt
wC c q e h q t nt c nt dt                     (22) 

and the final order quantity is  

   0
1 1 1 0.5q D n    

(see (1) and (6)). We refer to this policy, which is identified by superscript 0, as the benchmark policy. 

The optimal total cost under the full and matching trade-in program is 

      
 

  
1 1

1 1 1 1 2 1 1

0

jT q

j j rt j j j
wC c q e h q D t c d t dt C T q          

where 

      
 

  
1 1

1

1 1 1 1 2 1 1
0 0

arg min
T q

j rt j
w

q

q c q e h q D t c d t dt C T q



         
  

  for j = 1, 2. 

Clearly, 1 0
1 1C C  and 2 0

1 1C C with equality if and only if the optimal second-stage trade-in quantity is 

zero (i.e., 1 0 1
1 1 2 0C C q   ; 2 0 2

1 1 2 0C C q   ). The following proposition identifies a simple indicator 

of when it is profitable to supplement the final order quantity with a trade-in program.  

Proposition 2. If 1
rc e   , then 1 0

1 1C C  and 2 0
1 1C C . 

 Figure 4 illustrates how the final order quantity under full and matching trade-in policies differs from 

the benchmark final order quantity. Figure 5 illustrates the percent savings due to full and matching trade-

in policies relative to the benchmark. Note that in figures 4 and 5, a matching trade-in program is not used 

when n = 1 and  = -0.2 (i.e., 2 0
1 1q q ). 
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Figure 4: Optimal final order quantities under full and matching trade-in policies as a percent of the 
benchmark final order quantity. The trade-in potential is  = – 0.2 in the left plot and  = 0 in the right 
plot. The other parameter values, which are common to both plots are c1 = 0.2, cw = 0.1, h = 0.07, r = 0. 
 

 
Figure 5: Percent savings in total cost when the benchmark policy is replaced with full and matching 
trade-in policies. The trade-in potential is  = – 0.2 in the left plot and  = 0 in the right plot. The other 
parameter values, which are common to both plots are c1 = 0.2, cw = 0.1, h = 0.07, r = 0. 

 

The left plots of figures 4 and 5 reflect the setting where c1 = - . In this setting, the trade-in 

acquisition cost with the trade-in credit is so low that the cost of a single returned unit is the same as the 

cost from the vendor. This setting is extremely unfavorable to a trade-in program and may rarely arise in 

practice. Nevertheless, even in this unfavorable setting, trade-in policies are generally less expensive than 

the benchmark over all failure rates (the exception being the matching policy with n = 1). Figure 4 shows 
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that trade-in policies exploit the flexibility of dividing the source of components between the final order 

quantity and those that come from trade-ins. The fraction acquired from the vendor via the final order 

quantity increases as the failure rate increases. This is because the trade-in cost is sensitive to total volume 

acquired, so a higher fraction of total warranty demand is shifted to the final order quantity.  

Figure 4 also shows that the final order quantity q1 is generally larger under the matching trade-in 

policy than under the full trade-in policy. An exception to this relationship occurs at n = 0 and low failure 

rates. The reason stems from the second-stage inventory carrying cost that arises under a full trade-in 

policy; there is no second-stage inventory cost under a matching policy (due to zero inventory). The firm 

compensates for the full trade-in cost disadvantage by placing a larger final order quantity under the full 

trade-in policy than under the matching trade-in policy. The situation is reversed at larger failure rates. At 

larger failure rates, the full trade-in policy’s advantage of fewer warranty claims more than offsets the 

inventory carrying cost disadvantage, relative to the matching trade-in policy. In this setting, the firm 

compensates for the higher second-stage cost under the matching trade-in policy by placing a larger final 

order quantity than under the full trade-in policy. This relationship holds for all failure rates in Figure 4 

when the warranty expiration rate is high (i.e., n = 1). This is because an increase in the warranty 

expiration rate increases the relative cost advantage of the full trade-in policy through a greater reduction 

in warranty claims (see Figure 1). 

Figure 5 exhibits a pattern in cost savings that is similar to Figure 4 for the final order quantity. At n = 

0 and low failure rates, a matching trade-in policy is less costly because of the elimination of inventory 

carrying cost. At higher failure rates (and n = 0) the situation is reversed because the full trade-in policy’s 

advantage of fewer warranty claims more than offsets the inventory carrying cost disadvantage, relative to 

the matching trade-in policy. At n = 1, however, the full trade-in policy leads to significant percentage 

savings over the matching policy because an increase in the warranty expiration rate increases the relative 

cost of advantage of the full trade-in policy through a greater reduction in warranty claims. 

Figure 5 also illustrates that the percentage savings due to the trade-in policies is significant when the 

aggregate failure rate is small, and diminishes as the failure rate increases (i.e., as the optimal final order 

quantity covers an increasing fraction of total demand). However, while percentage savings is decreasing 

in the failure rate, the cost of the benchmark policy is increasing in the failure rate. In particular, the total 

cost of the benchmark policy is proportional to the failure rate (see (22)). Depending on parameter values, 

the absolute savings may be either increasing or decreasing in the failure rate. For the parameter values in 

Figure 5, for example, absolute savings is nondecreasing in failure rate except for the matching trade-in 

policy at n = = 0, which is initially increasing, then decreasing.  
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 We conclude this section with an observation on the impact of relaxing a constraint that is present in 

the optimization problem of the trade-in policies. Both policies set total supply (i.e., initial order quantity 

plus trade-in volume) equal to demand. When trade-in potential () and the cost of processing a warranty 

claim (cw) are very high, the firm may benefit from acquiring more components than what are needed to 

satisfy demand. For example, a very attractive full trade-in discount may induce nearly the entire 

population to trade in their product and almost eliminate future warranty claims. Consideration of this 

effect increases the attractiveness of trade-in programs relative to the benchmark, and due to its more 

dramatic effect on future demand, tends to favor a full trade-in policy over a matching trade-in policy. 

4.3 Impact of Uncertainty 

The analysis in the preceding sections is based on a deterministic model. The introduction of demand 

uncertainty introduces a new cost due to a mismatch between component supply and demand, and this 

mismatch cost is increasing in uncertainty. 

Incorporating uncertainty into the model greatly reduces its tractability. However, the basic cost 

impact of demand uncertainty on the benchmark policy versus the trade-in policies is clear. The 

benchmark policy uses the final order to cover demand over the entire warranty horizon and thus suffers 

the greatest exposure to demand uncertainty. Exposure to demand uncertainty under the trade-in programs 

is limited to uncertainty in demand over the second stage. Consequently, the introduction of demand 

uncertainty increases the attractiveness of trade-in programs compared to the benchmark policy. 

The negative effects of warranty demand uncertainty on the three policies are influenced by two main 

costs. Let 0
2c  denote incremental cost over cw of satisfying a warranty claim in the second stage by means 

other than a trade-in program. For example, if there is a third-party supplier of the component, then 0
2c  is 

the purchase cost. Alternatively, the firm may wish replace an old model under warranty with a new 

model, in which case 0
2c  + cw is the cost of this transaction. Let c3 denote the component disposal cost at 

end of the warranty horizon (e.g., c3 < 0 indicates a positive salvage value for the component). The higher 

the values of 0
2c  and c3, the greater the negative effect of demand uncertainty on the three policies.  

There are two factors that influence how the relative attractiveness of full and matching trade-in 

programs shift when demand uncertainty is introduced. The magnitude of demand uncertainty over the 

second stage is affected by the variation in time-to-failure of an individual component and the size of the 

warranty population. The full trade-in program has the advantage of a smaller warranty population, 

leading to lower demand uncertainty over the second stage. A disadvantage is that trade-in terms are set at 

the beginning of the second stage. A matching trade-in policy, on the other hand, has the advantage of 

adjusting trade-in terms throughout the second-stage as needed to better align supply with demand. Due to 
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this increased responsiveness, a matching trade-in policy is positioned to more effectively mitigate the 

mismatch costs than the full trade-in policy.  

 Another form of uncertainty that arises in practice is uncertainty in trade-in return volume. Return 

volume uncertainty has a greater effect on the full trade-in policy than the matching trade-in policy. The 

matching policy takes advantage of observed return volume in response to trade-in offers over time. 

Indeed, while deterministic analysis tends to favor a full trade-in policy, consideration of uncertainty 

points to a hybrid approach: A firm offers a trade-in policy to a sizeable fraction of the warranty 

population to gain the benefit of a meaningful drop in the warranty population, then makes periodic offers 

to remaining segments over time to gain the benefit of postponement, yielding lower uncertainty in 

demand and return volume. 

5. Summary 

5.1 Lessons for Managers 

Our analysis leads to two main lessons for managers. First, trade-in programs dominate the benchmark 

policy and have potential to significantly lower cost. Trade-in programs can be perceived as a new 

sourcing option, and therefore, incorporating them into the set of alternatives will not increase cost. What 

is more pertinent for managers are indicators that a trade-in program will generate significant savings. 

The single most important indicator is trade-in potential. The value of trade-in potential is the difference 

between two values: (i) the margin from a trade-in transaction, or new-product margin times the 

probability of a customer not purchasing from the firm if not for the trade-in offer, and (ii) the reduction 

in new product price required to get at least one customer to participate in the trade-in program. If trade-in 

potential is positive, then the cost of acquiring components via trade-in is negative (at least at low 

volumes); the firm earns money from acquiring a component via trade-in rather than spending money 

buying a component from the vendor. Management should examine the difference between trade-in 

potential and the cost of buying the component from the vendor. These values should not be difficult to 

estimate, and a large difference is a strong indicator of high savings from a trade-in program.  

A secondary indicator of high savings from a trade-in program is the fraction of the warranty 

population expected to fail prior to warranty expiration. This indicator draws on a more subtle value 

proposition than the difference in cost between a trade-in-sourced unit and a vendor-sourced unit: a trade-

in program reduces warranty claims. Each unit traded in reduces the warranty population of the obsolete 

component, which translates into fewer warranty claims. And the higher the failure rate, the greater the 

reduction in warranty claims.  

If a trade-in program is pursued, the next question is what type of trade-in program? Comparative 

analysis of full and matching trade-in programs suggests a second main lesson for managers—a one-time 
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trade-in discount offered to a sizable portion of the warranty population, possibly followed by offers to 

remaining segments of the population over the remainder of the warranty horizon, is likely to be the 

preferred alternative. A large initial offering with consequent returns translates into a meaningful drop in 

the warranty population, and thus future warranty claims. The initial offering may be followed by 

periodic smaller offerings to other segments to help mitigate the effects of uncertainty in both warranty 

claims and return volume. In some settings, a single one-time offering (i.e., a full trade-in policy) may be 

the only viable alternative. As noted above, the implementation of a matching trade-in program requires 

relatively detailed information on the warranty population (e.g., at a minimum, data on units under 

warranty with expiration dates by geographical region) that may not be available to some firms. 

5.2 Future Research 

There are a number of fruitful directions for future research. First, our models are deterministic. 

Extending the analysis to accommodate uncertainty is a worthy endeavor. Second, there are questions on 

how to effectively forecast warranty claims and return volumes. Third, we have focused on uncovering 

insights for management through analysis of stylized models. A natural extension may focus on the 

development of decision support models for use by practitioners. Fourth, there is a growing industry of 

reverse logistics firms. This raises the question of how and when to effectively outsource the management 

of returns, component harvesting, and warranty claim processing. 
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Online Appendix 

A Structurally Equivalent Buyback Model 

This sections describes how incorporating buyback programs into our model leads to a structurally 

equivalent model. Recall that V is the random valuation associated with the transaction of returning the 

used product in exchange for the new generation of the product, and that the return fraction at trade-in 

discount ct is  

P[V > pn – ct] =  = ct – (pn – 1). 

The value of V can also be interpreted as the reduction in valuation of a used product relative to the new 

product, and pn – V is the residual value of the used product given that it is traded in. The trade-in 

transaction requires that the customer purchase the new generation product from the firm. Let b denote 

the increase in V if this requirement is removed, that is, the random valuation of the used product is  

  pn – (V + b), 

and a customer receives positive surplus from returning the product and receiving a cash amount cb if and 

only if  

P[cb > pn – (V + b)] = P[V > pn – cb – b] =  = cb + b – (pn – 1).          (1) 

Recall also that the cost of a component obtained through a trade-in program for a given return fraction  

is 

  c2 = ct – (1 – )m =  – (1 – )m + (pn – 1).   

Under a buyback program there is no benefit of locking in disloyal customers (captured by (1 – )m in a 

trade-in program), and thus the cost of a component obtained through a buyback program for a given 

return fraction  is  

  cb =  – b + (pn – 1)  

(see (1)). Accordingly, replacing (1 – )m by b in the following analysis leads to companion results for a 

buyback program (equivalently, replacing trade-in resistance  = (1 – )m – (pn – 1) by buyback resistance 

b = b – (pn – 1)). Note that a buyback program is more cost effective than a trade-in program if and only 

if  

b > (1 – )m                        

(i.e., the reduction in valuation associated with the forced purchase more than offsets the margin from 

disloyal customers).  

Full Trade-in Policy Cost for q1 0 

In the body of the manuscript we presented an expression for the second-stage cost under a full trade-in 

policy for the special case of q1 = 0. As noted in Section 4.1, in the absence of a trade-in program, the 
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demand rate is d(t) = (1 – nt) and the cumulative demand and remaining demand functions are  

D(t) =    
0

1 1 0.5
t

nx dx t nt     

           1 1 1 0.5 1D t D D t t n t         . 

In this section, we derive the generalized cost expression that allows for q1  [0, D(1)].  

 Let N(t) denote the warranty population at time t  [0, 1]. The initial warranty population is 

normalized to 1 (i.e., N(0) = 1). Given that there is no trade-in program, the warranty population at time t 

is 

  N(t) =  
0

1 1
t

n x dx nt   . 

For any given final order quantity q1 [0, D(1)], the run-out time t1 = T(q1), by definition, satisfies  

  q1 = D(t1) = t1(1 – 0.5nt1). 

If n = 0, then  

  T1(q1) = q1/.  

If n  (0, 1], then solving the quadratic equation for t1 yields two roots: 

  
1/2

11
1 1 2

q
n

n 

     
   

. 

For any n  (0, 1], the larger of the two roots is greater than 1, which is infeasible, and thus the run-out 

time function is  

  T1(q1) =
1/2

11
1 1 2

q
n

n 

     
   

 

and the warranty population at the run-out time t1 = T1(q1) is 

  N(T1(q1)) =  
1/2

1
1 11 1 2

q
nT q n


    
 

. 

 For a given trade-in quantity q2 at run-out time t1, no warranties expire until time  

tx  min{t1 + q2/n, 1},  

at which point, warranties begin to expire at rate n until the end of the warranty horizon. Consequently, 

the demand rate is 

d(t) =
    
      

1 2 1

1 2

,                   ,

,  ,1

x

x x

N t q t t t

N t q n t t t t





  


   
    

and the demand during the second stage is 
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   D(1) – D(t1) =     
1

1 1

1 2

x

x

t t

N t q dx n t t dx      

      =      2

1 2 11 0.5 1 xN t q t n t      

If tx = 1, then solving q2 = D(1) – D(t1) for q2 yields 

 
     

   1 11
2 1 1

1 1

1 1
1

1 1 1 1

t t
q N t nt

t t

 
 

 
  

   
. 

Note that if n = 0, then tx = 1. If tx < 1 (and n > 0), then the solving q2 = D(1) – D(t1) for q2 yields two 

roots: 

       
1/2

1 1

2
1 1 1 1 1

n
t t n

n

 


                
, 

both of which are real and one of which is negative (and infeasible). Thus, if tx < 1, then  

       
1/2

1
2 1 1

2
1 1 1 1 1

n
q t t n

n

 


                
.   

Solving 1 =      
1/2

1
1 2 1 1 1

1 2
/ 1 1 1 1 1t q n t t t n

n

 


                  
 for n yields n = /(1 + ), and 

thus, tx ≤ 1 if and only if n ≥ /(1 + ). Combining the above results for different values of tx, we have 

  

 
   

     

1
1

1
1
2 1/2

1 1

1
1 ,                                             

1 1 1

2
1 1 1 1 1 ,  

1

t
nt n

t
q

n
t t n n

n

 
 

  
 

 
    

                    

. 

Substituting  

t1 = T1(q1) =

 

1

1/2

1

,                              0

1
1 1 2 ,  0,1

q
n

q
n n

n





 

            

 

into the above yields 1
2q as a function of q1, which when substituted into the cost expression yields the cost 

of a full trade-in policy as a function of the final order quantity q1: 

      
 

    
 

1 1

1

1
1 1 1 1
1 1 1 1 1 2 2 2

0

T q

rt rt
w w

T q

C q c q e h q D t c d t dt c q e h q D t c d t dt                , 

which after algebra, becomes 
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 
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

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
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When r =0, the expression reduces to 
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Matching Trade-in Policy Cost for q1 0 
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When r = 0, the expression reduces to 
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Proof of Proposition 1. For this proof, we will not use the normalization of t1 = 0 in order to clarify the 

expressions under a general second-stage starting time t1, expressions that will appear in our analysis of 

the first-stage problem. We initially develop the results for the special case of n = 0. We will then show 

that the optimal solution for this special case remains valid when n > 0. 

 Assume n = 0. Let N(t) denote the warranty population at time t. Due to n = 0, we have N(t) = 1 for all 

t < t1. The demand and supply rate over time interval [t1, 1] is d(t) = s(t) =N(t) and the warranty 

population function is 

  N(t) =        
1 1 1

11 1 1 ,  ,1
t t t

t t t

s x dx d x dx N x dx t t        . 

We obtain an explicit expression for N(t) by taking the limit of a discrete-time model as the time interval 

goes to zero. Given time interval  > 0, the failure rate per time interval  is , and we have 

       1 1 1 11d t s t N t s t                  
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and, in general, for integer i 

 
 1

1

1
i

N t i


  
 

.  

Let t = t – t1 = i. Taking the limit as  approaches zero,  

            N(t) =            10 0
lim / ln 1 lim / 1/

0
lim 1

t tt t te e e
       

         


      for t  [t1, 1]. 

Thus, d(t) = N(t) =  1t te    for t  [t1, 1]. By substituting  

(t) = d(t)/(t) =    1 /t te t                   (2) 

into     – 1 –t nc t p t , we see that ct(t) is decreasing in (t). Therefore, we replace the inequality 

constraint  
1

0

1t dt  with equality, and the constraint can be written as  
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 
 

 
1

1 1

1 1

1
t t

t t

e
t dt dt

t




 

   ,                 (3) 

and the second-stage problem can be  written as  

   
     

 

 
1

11

1 1

1 1
2
2

0,1
min : 1

t t
r t trt

w
t

t t

e
C e e t c dt dt

t






  


 
  



      
  
  . 

We solve the following equivalent problem 

   
    

 

 
1

1

1 1

1 1

0,1

1
min :

t t
r t t

t
t t

e
e t dt dt

t







 

 
  



   
  
  ,            (4) 

but we initially relax the bound constraint (t)  [0, 1] (i.e., unrestricted problem), that is, we solve  

 
    

 

 
1

1

1 1

1 1 1
min :

t t
r t t

t
t t

e
e t dt dt

t







 

 
  

   
  
  .             (5) 

After solving the unrestricted problem (5), we identify conditions on parameter values that ensure the 

solution is also optimal for the restricted problem (4). 

 To simplify notation, we temporarily let t1 = 0 (we account for the impact of t1 > 0 later). We define  

y(t) =
 0

t xe
dx

x







 , 

which implies  

y(t) = 
 

te

t







    

    1
'tt e y t  .                   (6) 

Thus, problem (5) is 

 
       

1
12

0

1
min ' : 0 0, 1r t

y t
e y t dt y y


     

  
 ,            (7) 

which can be solved using calculus of variations methods. Let y*(t) denote the optimal function. We 

express y(t) in terms of parameter a, y*(t), and difference function h(t), that is,  

y(t) = y*(t) + ah(t)   

and thus y(t) = y*(t) + ah(t). For any feasible y(t), we must have h(0) = h(1) = 0 (i.e., in order to satisfy 

the boundary conditions, which are clearly satisfied by the function y*(t)). Let 

g(a) =          
1 1

112 2 *

0 0

' ' 'r t r te y t dt e y t ah t dt           .   
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Note that  

g(a) =        
1

22 *

0

' ' 'r te y t ah t h t dt       .             (8) 

Applying integration by parts and recognizing 
1

0
uv = 0 due to h(0) = h(1) = 0, we have 

g(a) =         
         

 
2*1

2

3* *
0

2 ' ' 2

' ' " "

r t
r y t ah t

e h t dt
y t ah t y t ah t






 



   
      

 .  

Since y*(t) is optimal, we can conclude that for any h(t) (with h(0) = h(1) = 0), we must have g(0) = 0. 

This implies that the integrand of the above (with a = 0) must be equal to zero at all values of t, that is, we 

must have 

             2 32 * * *2 ' 2 ' " 0r te r y t y t y t h t 
        

 

         * *2 ' 2 " 0r y t y t     

       * *2
" '

2

r
y t y t

    
 

 

Solving the differential equation, we get 

   0.5* ' r ty t Ae   ,     

where A is obtained from the boundary condition, i.e., 

      
1

* *

0.5
0

1 0.5
1 '

1 r

r
y y t dt A

e 


   


   

    

Thus 

     

  
0.5

*

0.5

0.5
'

1

r t

r

r e
y t

e









 

 





.                (9) 

The function  * 'y t  is a unique extremal (i.e., no other function yields g(0) = 0). Taking the derivative of 

(8) and evaluating at a = 0, we get 

g(0) =      
1

3 22 *

0

2 ' 'r te y t h t dt         .  

Since y*(t) > 0 for all t  [0, 1], it follows that g(0) > 0, and thus  * 'y t solves (7).  

Substituting (9) into (6) yields optimal trade-in fraction 
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   
       0.5 0.5 0.5 0.5

1
1 1

'
0.5 0.5

r r t rt rt

t
e e e e e

t e y t
r r

  


 


 

    


 
  

 
,    

and accounting for t1 > 0 yields optimal trade-in fraction for the unrestricted problem 

 
     1 10.5 1 0.51

0.5

r t r t te e
t

r






   



.               (10) 

Recall that the difference between the unrestricted problem and the restricted problem is that the 

restricted problem includes the constraint (t)  [0, 1]. From (10) we see that (t) is increasing in t and 

(t1)  [0, 1]. Thus, if (1)  1, then the optimal solution to the unrestricted problem is also optimal for 

the restricted problem. Note that  

 
     

    
1 1

1 1

0.5 1 0.5 1

0.5 1 1
1

1 1 1 1
0.5 2

r t r t

r t t
e e r

e e
r



 



 

   

  
          

.      (11) 

Thus, (t)  [0, 1] if and only if (11) holds. The optimal trade-in offer rate is obtained by substituting (10) 

into (2) and solving for (t), the trade-in quantity is obtained from    
1

1

2

t

q t t dt   , and the optimal 

cost is obtained by substituting the optimal acceptance rate and trade-in offer rate functions into the cost 

function: 

     

  
 

1

1

1

0.5

0.5 1

0.5

1

r t t
t t

r t

r e
t e

e







 
 

  

 
    

               (12) 

 11
2 1 tq e                   

       
 

1 1

1

2
0.5 1 0.5 1

2
2

1 1

0.5

r t r t

rt
w

e e
C e c

r r

  


 

     



                     

.     

In the preceding, we derived the optimal solution under the assumption that n = 0. We next show that 

the solution is also optimal when n > 0. Note that warranty population at the beginning of the second 

stage when the trade-in program goes into effect is 1 – nt1. Adapting the solution in (12) to account for the 

fact that a total 1 – nt1 are made during the second stage, we get  

       

  
 

1

1

1

0.5

1 0.5 1

0.5
1

1

r t t
t t

r t

r e
t nt e

e







 
 

  

 
     

,             (13) 

i.e., due to our normalization of the population size to 1, (12) gives the optimal fraction of the warranty 

population that receives the trade-in offer over time.  

If n > 0, then it is conceivable that some warranties will expire during the second-stage prior to a 
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customer receiving a trade-in offer. If such a scenario cannot occur under the optimal trade-in offer rate 

given in (13), then the preceding analysis continues to apply. Indeed, as we show below, this is the case.  

According to (13), the total number of trade-in offers during interval [t1, t] is 

 f(t) =      

  
 

1

1

1

1 1

0.5

0.5 1

0.5

1

r x tt t
x t

r t
t t

r e
x dx e dx

e







 
 

  

 
    

  .  

Observe that f(t) is a concave increasing function over the interval [t1, 1] with f(t1) = 0 and f(1) = 1 – nt1. If 

there was no trade-in policy, the total number of warranties that would expire during interval [t1, t] is 

  g(t) =
   1 1

1

,  ,1

1 ,     1

n t t t t

nt t

  

 

. 

Thus, f(t)  g(t) for all t  [t1, 1] (i.e., no warranties expire during the second stage prior to receipt of a 

trade-in offer). Therefore, the structure of the optimal solution for the case of n = 0 holds for the case of n 

> 0, through the expressions for (t), q2, and 2
2C are generalized to account for the lower warranty 

population at the start of the second stage: 

 
     1 10.5 1 0.51

0.5

r t r t te e
t

r






   



.               (14) 

       

  
 

1

1

1

0.5

1 0.5 1

0.5
1

1

r t t
t t

r t

r e
t nt e

e







 
 

  

 
     

,             (15) 

    11
2 11 1 tq nt e                      (16) 

 

 
       

 
1 1

1

2
0.5 1 0.5 1

2
2 1

1 1
1

0.5

r t r t

rt
w

e e
C e nt c

r r

  


 

     



                      

.     (17) 

Proof of Proposition 2. The unit acquisition cost under a trade-in program with acceptance rate  is c2 = 

 – , and the acquisition cost at the origin ( = 0)  is c2 = –. Compared to the benchmark, trade-in 

programs result in lower inventory and fewer total warranty claims. Thus, a necessary condition for 

1 2
2 2 0q q  , is c1  –e-r (i.e., the firm cannot reduce acquisition cost by acquiring product at the end of 

the warranty horizon via a trade-in), and the contrapositive of  

  1 2
2 2 10 rq q c e       

is  

  1 2
1 2 20, 0rc e q q     .   


