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Wine Analytics: Fine Wine Pricing and Selection under 
Weather and Market Uncertainty 

 

We examine a risk-averse distributor’s decision in selecting between bottled wine and wine futures under 
weather and market uncertainty. At the beginning of every summer, a fine wine distributor has to choose 
between purchasing bottled wine made from the harvest collected two years ago and wine futures of wine 
still aging in the barrel from the harvest of the previous year. At the end of the summer, after realizing 
weather and market fluctuations, the distributor can adjust her allocation by trading futures and bottles.  
 
The paper makes three contributions. First, we develop an analytical model in order to determine the 
optimal selection of bottled wine and wine futures under weather and market uncertainty. Our model is 
built on an empirical foundation in which the functional forms describing the evolution of futures and 
bottle prices are derived from comprehensive data associated with the most influential Bordeaux 
winemakers. Second, we develop structural properties of optimal decisions. We show that a wine 
distributor should always invest in wine futures because it increases the expected profit in spite of being a 
riskier asset than bottled wine. We characterize the influence of variation in various uncertainties in the 
problem. Third, our study empirically demonstrates the financial benefits from using our model for a 
large distributor. The hypothetical average profit improvement in our numerical analysis is significant, 
exceeding 21%, and its value becomes higher under risk aversion. The analysis is beneficial for fine wine 
distributors as it provides insights into how to improve their selection in order to make financially 
healthier allocations.  
 

Keywords: wine futures, pricing, weather uncertainty, market uncertainty, risk aversion 

 

1.  Introduction 

This paper examines a wine distributor’s annual decision regarding the selection of bottled wine and wine 

futures under weather and market uncertainty. At the end of each summer, a winemaker harvests grapes, 

crushes them in order to produce wine. A fine wine goes through a long aging process ranging between 

18 to 24 months. The wine can be sold in advance in the form of wine futures, often referred to as “en 

primeur” due to the popular futures campaign for Bordeaux wines. Wine futures begin to trade before the 

first summer following the harvest (approximately eight months after harvest). The wine gets bottled in 

the second summer and is sold for retail and distribution; those who purchased this wine in the form of 

futures also receive their wine shipment.  

To understand the difference between bottled wine and wine futures, let us consider the 2013 vintage 

of a fine wine as an example provided in Figure 1. The 2013 vintage of this wine is made from the grapes 

harvested in September 2013; its futures are sold in May 2014, and the wine is bottled and sold in May 

2015. Similarly, the 2014 vintage is produced from the grapes harvested in September 2014, and its 

futures come out in May 2015. As a result, the distributor has two products in May 2015 from the same 

fine wine producer: (1) The 2013 vintage in the form of bottled wine, and (2) the 2014 vintage in the form 

of wine futures (a contract to take the possession of the 2014 vintage wine in May 2016). Thus, in May 
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2015, a fine wine distributor has to select the amounts of bottled wine from the 2013 vintage and wine 

futures of the 2014 vintage. A distributor’s business involves buying the wine from the winemaker and 

immediately pushing it downstream to the wholesalers and retail stores. Thus, its profits are based on 

quick movement of wine, rather than opportunistic sale based on wine prices. Our paper assists wine 

distributors by developing an analytical model to determine the allocation decisions between bottled wine 

and wine futures under weather and market uncertainty. The model relies on an empirical foundation that 

describes the price evolution of futures and bottles. The empirical analysis provides the justification for 

the functional forms describing the impact of weather and market conditions on prices.  

 

 

Figure 1. The timeline of futures and bottle trade in wine production. 

 

Quality of a fine wine is greatly influenced by weather conditions during the grape growing season; 

often higher temperatures lead to better quality of grapes and wine. Due to differences in weather 

conditions from one year to the other, two consecutive vintages of the same wine may have very different 

quality, and hence, price. A striking example regarding the impact of weather on wine futures prices can 

be seen from the Bordeaux region where the summer of 2005 was very hot and dry, resulting in one of the 

finest vintages in recent years. Prior to the growing season in 2005, the wine futures for the 2004 vintage 

of Troplong Mondot was released to the market at the price of $62/bottle. The impact of superior weather 

in the summer of 2005 was so big that the wine futures price for the 2005 Troplong Mondot jumped to 

$233/bottle, corresponding to a 276% increase when compared with the futures price of the previous 

vintage. This is an example of the improved weather conditions from 2004 to 2005, and its impact on 

wine futures prices. Moreover, the positive weather during the summer of 2005 negatively impacted the 

2004 vintage wine, and caused the bottle price of the 2004 vintage to go down to $54 per bottle, resulting 

in a 13% reduction from its futures price from the prior year. This is an example where the growing 

weather condition not only influences the wine futures price of its vintage but also the evolution of a 

futures price to the bottle price in the previous vintage.  

In addition to weather fluctuations, changes in the market conditions also drive fine wine prices. All 

fine wine futures and bottles are traded in London International Vintner’s Exchange (Liv-ex) with 
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standardized contracts. We use Liv-ex 100 index, composed of 100 most sought-after wines, in order to 

describe the fine wine market conditions. This index is declared as the “fine wine industry’s leading 

benchmark” by Reuters. When Liv-ex 100 index decreased by 17.17% in 2008 (in comparison to 2007), 

the top Bordeaux winemakers priced their 2008 vintage wines 16.66% less than their 2007 vintage wines 

on average despite the highly similar weather conditions between the two growing seasons. Our analysis 

combines the impact of weather and market fluctuations in explaining the price evolution of wine futures 

and bottled wine. These price evolution functions are utilized in developing an analytical model to help 

the distributor’s selection between wine futures and bottled wine.  

Wine distribution is an important business around the world. In the US alone, the wine industry 

generates $37.6 billion each year with a projected 8.2% growth in the upcoming years. Under the 

presence of drastic changes in vintage prices depending on weather and market conditions, a wine 

distributor is often puzzled with whether to invest in wine futures of the previous year’s vintage or buy 

recently bottled wine from two vintages ago. While wine futures exhibit a greater uncertainty as future 

weather conditions can negatively influence the bottle price as in the example of the 2004 Troplong 

Mondot, it also allows the distributor to lock up limited supply at lower prices. Moreover, futures can be 

easily traded in Liv-ex, the exchange platform for fine wine without having to make physical shipments 

and comply with legal restrictions. Thus, wine futures are highly liquid in comparison to bottled wine. 

Purchasing bottles can be perceived as a safer bet upfront as the bottle prices are revealed. However, 

market conditions continue to influence these prices. The distributor can observe the summer weather 

conditions getting comparative indications as to how the futures price is going to evolve to the bottle 

price. Moreover, the distributor can later change its allocation through buying additional or selling 

existing futures with limited ability to move its bottled wine inventory.  

When should a wine distributor engage in futures? Our work finds motivation from conversations 

with the executives at the largest wine distributor in the US and in the world that does not invest in wine 

futures due to the lack of knowledge about futures prices and their evolution to bottle prices. Earlier 

research (Ashenfelter et al. 1995 and Ashenfelter 2008) has shown that mature Bordeaux wine prices can 

be predicted accurately using growing season weather conditions, but these studies conclude that young 

wine prices (i.e., futures prices and prices for the recently released bottled wines) cannot be predicted 

using weather conditions. Our empirical analysis provides an explanation for the impact of weather and 

market changes in young wine prices. It serves as a foundation for our analytical model, and enables us to 

estimate the distributor’s economic benefit from investing in a combination of wine futures and bottled 

wine (when compared with a distributor that invests only in bottled wine).  

Wine futures are often perceived to be a riskier alternative than bottled wine. Our empirical analysis 

confirms this perception as it shows that wine futures prices are influenced by both weather and market 
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fluctuations, whereas bottled wine prices are influenced only by the changes in market conditions. Thus, a 

distributor would not be encouraged to make investments in futures. Rather, the distributor would spend 

its money in physical bottles where the price is already evolved and has smaller uncertainty. Indeed, this 

has been the practice at some of the distributors as they invest solely in bottled wine, bypassing the 

futures alternative. Our analytical model shows, however, that a distributor should always make some 

investment in futures. This finding is confirmed through a numerical analysis using comprehensive data.  

The remainder of the paper is organized as follows. Section 2 reviews the relevant literature from 

economics, operations and supply chain management, and demonstrates how our work differs from earlier 

publications. Section 3 develops an analytical model to help a distributor determine the allocation 

decisions between wine futures and bottled wine. Section 4 presents the economic benefit from our 

proposed model using comprehensive data from the most influential Bordeaux winemakers. Section 5 

presents our conclusions and managerial insights. All proofs and derivations, and the details of our data 

collection are presented in the appendix.  

2.  Literature Review 

The economics literature has shown significant interest in understanding, explaining, and predicting wine 

prices. Ashenfelter et al. (1995) and Ashenfelter (2008) are the two seminal papers showing that mature 

Bordeaux wine prices can be predicted using weather and age with accuracy, however, they both 

conclude that their models fail to explain young wine prices. For a wine distributor, however, most trade 

takes place when the wine is young, and therefore, it is important to understand the evolution of young 

wine prices. Our work examines how young wine prices are impacted by the fluctuations in weather and 

market conditions. While we complete this analysis in order to build an analytical model that determines 

the optimal selection of wine futures and bottled wine, our empirical findings complement earlier 

publications by providing an explanation for the evolution of young wine prices.  

Jones and Storchmann (2001), Lecocq and Visser (2006), Ali and Nauges (2007), Ali et al. (2008), 

and Ashenfelter and Jones (2013) also address the price prediction of Bordeaux wines based on weather 

conditions and/or tasting scores. Byron and Ashenfelter (1995) and Wood and Anderson (2006) extend 

this stream to Australian wines while Haeger and Storchmann (2006) and Ashenfelter and Storchmann 

(2010) examine American wines and German wines, respectively. However, none of these papers focus 

on young wine pricing nor have a selection analysis that can benefit distributors. 

Noparumpa et al. (2015) investigate the impact of tasting scores on young wine prices, and then 

provide a model for winemakers to determine the optimal amount of wine to be sold in the form of futures 

and the optimal amount that should be sold after the wine is bottled. Their work concludes that wine 

futures help a winemaker collect her revenues in advance while passing the risk of having a poor quality 

vintage to the distributor. They estimate that selling wine in advance in the form of futures increases 
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Bordeaux winemakers’ profits by 10% on average. If winemakers are the clear winners of futures trade, 

then one asks what is in it for the wine distributors. Our paper sheds light on this question by providing an 

analytical model which incorporates the advantages (i.e., being easily tradable through the Liv-ex 

platform) and the disadvantages (i.e., bearing a greater price uncertainty) of wine futures for distributors. 

We utilize weather and market fluctuations instead of tasting scores (correlated with weather) to explain 

futures prices; this leads to considerably higher explaining power with greater adjusted R2 values in a 

larger sample featuring the leading Bordeaux winemakers. Moreover, our explanation of the evolution of 

a futures price into bottle price is a unique aspect of our study. 

Wine futures is a form of advance selling and purchasing, and recent publications advocate the use of 

advance selling in various settings. Xie and Shugan (2001) exemplify the benefits in electronic tickets and 

online platforms. Cho and Tang (2013) examine the influence of supply and demand uncertainty, and 

Tang and Lim (2013) investigate the influence of speculators in advance selling. Boyacı and Özer (2010) 

demonstrate the advantages of advance selling in capacity planning. Our work departs from these studies 

in three features: (1) The wine distributor has to choose between advance purchase of an upcoming 

product in replacement of the present product; (2) as the price evolves through revelations of uncertainty, 

the distributor has the ability to adjust its selection between the two product offerings; (3) the sources of 

uncertainty in our problem are weather and market fluctuations differentiating our problem setting.  

Wine futures depart from the commodity futures described in Fama and French (1987) and Geman 

(2005). In commodity markets (e.g., corn, soybean, cocoa), a settlement in a futures contract means that 

the agricultural product delivered to the buyer can be produced by any farmer. In fine wine, however, if a 

buyer is asking for a bottle of 2008 Lafite Rothschild, the seller cannot substitute it with a bottle of 2007 

Lafite Rothschild, or a bottle of 2008 Troplong Mondot. Thus, fine wine cannot be substituted across 

producers or vintages, and therefore, is not a commodity. Moreover, in traditional commodities, futures 

contracts and spot purchases occur simultaneously for the commodity product. However, spot purchases 

of bottled fine wine do not begin until the completion of the futures trade of the same wine.  

Fine wines are also treated as a long-term investment. Storchmann (2012) provides a comprehensive 

review about wine economics, and covers the use of wine as an investment option. Dimson et al. (2014) 

find that young Bordeaux wines yield greater returns than the mature ones. This finding further amplifies 

the importance of explaining the evolution of young wine prices. Jaeger (1981), Burton and Jacobsen 

(2001), and Masset and Weisskopf (2010) also examine the return on wines as a long-term investment. 

Jaeger (1981), Burton and Jacobsen (2001), and Dimson et al. (2014) conclude that wines can yield 

greater returns than treasury bills, but less than equities. Masset and Weisskopf (2010), on the other hand, 

demonstrate that fine wines can outperform equities during a financial crisis when financial assets are 

highly correlated. While these studies consider wine as a long-term investment, our paper focuses on the 
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benefits as a short-term investment from a distributor’s perspective who buys the recently released young 

wines from winemakers and sells to the wholesalers and retailers shortly after. 

Supply uncertainty is another related stream as quality and price may vary dramatically across 

different vintages of the same wine depending on weather and market conditions. Yano and Lee (1995) 

provide a comprehensive review of the literature that focuses on supply uncertainty as a consequence of 

yield fluctuations. Jones et al. (2001) examine the impact of yield uncertainty in the corn seed industry for 

a firm that utilizes farmland in two opposing hemispheres, and develop a two-stage production scheme to 

better match supply and demand.  Kazaz (2004) introduces the impact of yield fluctuations into what he 

defines as the yield-dependent cost and price structures in the olive oil industry. Kazaz and Webster 

(2011) add a price-setting capability, and show how yield fluctuations influence a firm’s pricing 

decisions. Their study also demonstrates the benefits of using fruit futures (if existed) in mitigating supply 

uncertainty. Boyabatli et al. (2011) and Boyabatli (2015) examine the purchasing contracts for fixed-

proportion technology products in the presence of random spot prices. Kazaz and Webster (2015) develop 

optimal price and quantity decisions under supply and demand uncertainty and under risk aversion. 

Tomlin and Wang (2008) develop price and quantity decisions in a co-production setting that results from 

random yield in the split of two distinct products. Li and Huh (2011) also develop price and quantity 

decisions for multiple products using a multinomial logit model. Departing from these papers, we define 

supply uncertainty in the form of variation in quality due to growing season weather; hence, wine futures 

have a quality-dependent price structure. Moreover, the secondary (emergency) investment option utilized 

in some of these papers becomes available in the second stage whereas, in our model, both wine futures 

and bottled wines are simultaneously available at the beginning. 

Weather and market realizations provide signals to the wine industry, and the impact of similar 

signals, in particular for estimating demand, is examined widely in the operations management literature. 

Gümüş (2014), for example, investigates the impact of forecast as a signal for demand. Our work departs 

from this body of literature as we study signals that influence the evolution of price over time.  

3.  The Model and its Analysis 

This section develops and analyzes a model that helps the wine distributor determine the investment 

allocation between wine futures and bottled wine. The prices of wines futures and bottled wine are 

influenced by the randomness in weather and market conditions after these decisions take place. In this 

model, the functional forms describing the evolution of futures and bottle prices rely on an empirical 

foundation.  

In each May, a risk-averse wine distributor has to select between wine futures (of new vintage) and 

bottled wine (of previous vintage) of a winemaker. Specifically, in May of calendar year t, the distributor 
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has to determine the amount of money to be invested in wine futures from vintage t – 1 and bottled wine 

from vintage t – 2.  

3.1. Empirical Foundation for the Model 

In this section, we present an empirical analysis that serves as a foundation for our mathematical model 

that will be presented in Section 3.2. The results of our empirical analysis determines the functional forms 

describing the price evolution of young wines as functions of weather and market random variables. The 

functional forms that emerge from the empirical analysis are used in the analytical model.  

We begin our discussion with realized values of futures and bottled wine prices. In May of calendar 

year t, futures for vintage t – 1 are released at the (realized) price of rf1
j,t-1 for winemaker j. We express the 

futures price of the same vintage for winemaker j in September of calendar year t as rf2
j,t-1, and in May of 

calendar year t + 1 as rf3
j,t-1. In May of calendar year t, bottled wine of winemaker j from vintage t – 2 is 

also released, and we express this (realized) bottle price as rb1
j,t-2. We denote the bottle price of vintage t – 

2 from winemaker j in September of calendar year t with rb2
j,t-2, and in May of calendar year t + 1 with 

rb3
j,t-2. Figure 2 illustrates the evolution of realized futures and bottle prices over time.  

 

 

Figure 2. The evolution of futures and bottled wine prices under weather and market uncertainty.  

  

After the wine distributor makes investments in futures of vintage t – 1 and bottled wine of vintage t – 

2 from winemaker j in May of calendar year t, a new summer weather information becomes available in 

calendar year t. This new summer weather information, which is fully observed by September of calendar 

year t, provides a relative comparison to the wines that are from vintages t – 1 and t – 2. For the case of 

wine futures of vintage t – 1, the new weather information from May–September period of year t 

compared to the growing season of grapes (i.e., May–September period of year t – 1) can play a role. 

Thus both rf2
j,t-1 and rf3

j,t-1 can be influenced by the new weather information. For the case of bottled wine 

of vintage t – 2, the new weather information from May–September period of year t compared to the 

growing season of grapes (i.e., May–September period of year t – 2) can also influence the values of rb2
j,t-

2 and rb3
j,t-2. Similarly, market conditions change from May to September of year t. As a consequence, the 

weather and market information observed at the end of summer in calendar year t can have an impact of 

the values of rf2
j,t-1, rf3

j,t-1, rb2
j,t-2, and rb3

j,t-2. 
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We next examine the impact of weather and market fluctuations on the evolution of wine futures and 

bottled wine prices. Let us denote weather fluctuations with random variable tw  and its realization with 

wt, and we denote market fluctuations with random variable tm  and its realization with mt. The results 

provide justification for the functional forms of futures and bottled wine prices in our analytical model as 

functions of wt and mt. The appendix provides a detailed explanation of the data used in the empirical 

analysis. The empirical analyses utilize standardized prices of wine futures and bottled wine as in 

Noparumpa et al. (2015). 

3.1.1. Models 1A and 1B: Futures Price Evolution 

We express the standardized futures price of vintage t – 1 from winemaker j in stage i = {1, 2, 3} as sfi
j,t-1 

= (rf
i

j,t–1
 – µfi

j)/σfi
j where µfi

j and σfi
j represent the mean and the standard deviation of the futures price.  

For the futures of vintage t – 1, we denote the average temperature difference between the new 

growing season (of calendar year t) and the wine’s own growing season by wt. A positive (negative) wt 

implies that the new growing season is relatively warmer (colder) than the growing season of the futures. 

Our choice of an absolute weather change measure (as opposed to percentage change) is consistent with 

Ashenfelter (2008) who uses an absolute measure of weather in his analysis. Unlike temperature, which 

conforms to a range that is relatively universal over each season, market indices may grow and shrink 

significantly over time, and thus percentage change is a more meaningful indicator than absolute change. 

We denote the percentage change in Liv-ex 100 index over the new growing season (of calendar year t) 

by mt. A positive (negative) mt implies that the market conditions are improved (worsened) over the new 

growing season.  

We develop the following linear regression models designated as Model 1A and Model 1B, 

respectively, where t = {2008, 2009, 2010, 2011, 2012} and j = {1, 2, …, 44}: 

(sf2
j,t-1 – sf1

j,t-1) = γ0 + γ1wt + γ2mt + εj,t                       (1) 

(sf3
j,t-1 – sf2

j,t-1) = η0 + η1wt + η2mt + εj,t.                (2) 

Table 1 provides the regression analysis of the impact of new summer weather and market information on 

the price evolution of futures with sf2
j,t-1 (in Model 1A) and sf3

j,t-1 (in Model 1B).  

The analysis in Table 1 provides four results. First, better weather of the upcoming vintage (i.e., 

higher value of wt) has a negative impact on the evolution of futures price from sf1
j,t-1 to sf2

j,t-1. This 

weather effect is statistically significant at 1% level. This can be easily understood as the upcoming 

vintage had better weather conditions than the vintage of futures, and therefore, the price of wine futures 

would decrease. Moreover, better weather of the upcoming vintage (i.e., higher value of wt) has a 

continued negative impact (statistically significant at 1%) on the evolution of futures price from sf2
j,t-1 to 

sf3
j,t-1. This implies that the new weather information is not completely priced in the futures as of 
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September of calendar year t. A similar observation is made in Ashenfelter (2008). Second, the negative 

coefficient representing the impact of weather in the evolution of futures price from sf2
j,t-1 to sf3

j,t-1 is 

greater in absolute value than that of sf1
j,t-1 to sf2

j,t-1. Third, improving market conditions during the 

summer of calendar year t (with a higher value of mt) has a positive impact on the evolution of futures 

price both from sf1
j,t-1 to sf2

j,t-1 and from sf2
j,t-1 to sf3

j,t-1. This market effect is statistically significant at 1% 

level. Fourth, the positive coefficient representing the impact of market conditions in the evolution of 

futures price from sf2
j,t-1 to sf3

j,t-1 is greater than that of sf1
j,t-1 to sf2

j,t-1.  

 

 Model 1A: sf2
j,t-1 – sf1

j,t-1 Model 1B: sf3
j,t-1 – sf2

j,t-1 

Parameter Coefficient t-stat Coefficient t-stat 

Intercept 0.0296 2.85*** 0.0788 4.45*** 

wt -0.0501 -4.58*** -0.1281 -6.88*** 

mt 0.0079 5.47*** 0.0223 9.01*** 

Adjusted R2 0.19  0.37  

Observations 220  220  

Table 1. Linear regression results demonstrating the impact of weather and market conditions on the 
evolution of futures prices. *** denotes statistical significance at 1%. 

 

3.1.2. Models 2A and 2B: Bottle Price Evolution 

We express the standardized bottle price of vintage t – 2 from winemaker j in stage i = {1, 2, 3} as sb
i

j,t–2
 

= (rb
i

j,t–2
 – µbi

j)/σbi
j where µbi

j and σbi
j represent the mean and the standard deviation of the bottle price. 

For the bottles of vintage t – 2, we denote the average temperature difference between the new 

growing season (of calendar year t) and the wine’s own growing season by wt. A positive (negative) wt 

implies that the new growing season is relatively warmer (colder) than the growing season of the bottles. 

We denote the percentage change in Liv-ex 100 index over the new growing season (of calendar year 

t) by mt. A positive (negative) mt implies that the market conditions are improved (worsened) over the 

new growing season. 

We develop the following linear regression models designated as Model 2A and Model 2B, 

respectively, where t = {2008, 2009, 2010, 2011, 2012} and j = {1, 2, …, 44}: 

(sb
2

j,t–2
 – sb

1

j,t–2
) = θ0 + θ1wt + θ2mt + εj,t                       (3) 

(sb
3

j,t–2
 – sb

2

j,t–2
) = λ0 + λ1wt + λ2mt + εj,t.                (4) 
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Table 2 provides the regression analysis of the impact of new summer weather and market information on 

the evolution of bottle prices described as sb
2

j,t–2
 (in Model 2A) and sb

3

j,t–2
 (in Model 2B).  

 

 Model 2A: sb
2

j,t–2
 – sb

1

j,t–2
 Model 2B: sb

3

j,t–2
 – sb

2

j,t–2
 

Parameter Coefficient t-stat Coefficient t-stat 

Intercept 0.0248 1.52 0.0187 0.53 

wt -0.0082 -0.59 0.0245 0.82 

mt 0.0059 2.19** 0.0255 4.43*** 

Adjusted R2 0.01  0.12  

Observations 220  220  

Table 2. Linear regression results demonstrating the impact of weather and market conditions on the 
evolution of bottle prices. ** and *** denote statistical significance at 5% and 1%, respectively. 

 

The analysis in Table 2 provides three results. First, weather conditions of the upcoming vintage (i.e., 

the value of wt) does not have a statistically significant effect on the evolution of bottle prices, neither 

from sb
1

j,t–2
 to sb

2

j,t–2
, nor from sb

2

j,t–2
 to sb

3

j,t–2
. Second, improving market conditions during the summer 

of calendar year t (with a higher value of mt) has a positive impact on the evolution of bottle prices both 

from sb
1

j,t–2
 to sb

2

j,t–2
 and from sb

2

j,t–2
 to sb

3

j,t–2
. This market effect is statistically significant at 5% level in 

Model 2A and 1% level in Model 2B. Third, the positive coefficient representing the impact of market 

conditions in the evolution of futures price from sb
2

j,t–2
 to sb

3

j,t–2
 is greater than that of sb

1

j,t–2
 to sb

2

j,t–2
.  

3.1.3. Functional Forms for the Analytical Model 

We next present the functional forms that emerge from the empirical analysis and that will be used to 

describe the price evolution of wine futures and bottled wine as functions of weather and market 

uncertainty. We drop the superscripts j, t – 1, and t – 2 from futures and bottled wine prices, and the 

subscript t from w and m for notational simplicity because the analytical model given in Section 3.2 

examines the distributor’s investment decision in futures of vintage t – 1 and bottles of vintage t – 2 of a 

single winemaker (i.e., an arbitrary j) in May of an arbitrary year t.  

We begin with the functional forms representing the price evolution of wine futures. We denote the 

futures price in May of calendar year t as f1. For a given (w, m), we define the functional form of the 

realized futures price in September of calendar year t with f2(w, m), and the (expected) futures price in 

May of calendar year t + 1 with f3(w, m).  

We use the four empirical findings in Section 3.1.1 regarding the impact of weather and market 

fluctuations on futures prices in order to describe the functional forms. In the first empirical finding, the 



12 

coefficients of weather random variable are negative, and therefore we define ∂f2(w, m)/∂w < 0 and ∂f3(w, 

m)/∂w < 0. In the second empirical finding, the negative coefficient representing the impact of weather in 

the evolution of futures price from sf2
j,t-1 to sf3

j,t-1 is greater in absolute value than that of sf1
j,t-1 to sf2

j,t-1. 

Therefore, we define the functional form of the futures price evolution as ∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 

0. In the third empirical finding, the coefficients of market random variable are positive, and therefore, we 

define ∂f2(w, m)/∂m > 0 and ∂f3(w, m)/∂m > 0. In the fourth empirical finding, the positive coefficient 

representing the impact of market conditions in the evolution of futures price from sf2
j,t-1 to sf3

j,t-1 is greater 

than that of sf1
j,t-1 to sf2

j,t-1. Therefore, we define the functional form of the futures price evolution as ∂f3(w, 

m)/∂m > ∂f2(w, m)/∂m > 0.  

We next present the functional forms that describe the price evolution of bottled wine. We denote the 

bottle price in May of calendar year t as b1. We use the three empirical findings in Section 3.1.2 regarding 

the impact of weather and market fluctuation on bottled wine prices in order to describe the functional 

forms. Because the first empirical finding indicates that weather is not statistically significant in the 

evolution of bottle price, the functional forms representing bottle prices do not feature w in their 

arguments. For a given (w, m), we define the functional form of the realized bottle price in September of 

calendar year t with b2(m), and the (expected) bottle price in May of calendar year t + 1 with b3(m). In the 

second empirical finding, the coefficients of market random variable are positive, and therefore, we 

define ∂b2(m)/∂m > 0 and ∂b3(m)/∂m > 0. In the third empirical finding, the positive coefficient 

representing the impact of market conditions in the evolution of futures price from sb2
j,t-2 to sb3

j,t-2 is 

greater than that of sb1
j,t-2 to sb2

j,t-2. Therefore, we define the functional form of the bottle price evolution 

as ∂b3(m)/∂m > ∂b2(m)/∂m > 0.  

Our empirical analyses employ standardized prices. It is important to note that when the regression 

analyses presented in tables 1 and 2 are replicated using natural logarithm of prices, we obtain similar 

results. However, our results obtained with standardized prices might show some bias if we were to use a 

longer panel data. In order to prevent the potential bias, one can split the data into two subsets by the 

longitudinal dimension, then use the first set to compute the values of mean and standard deviation, and 

use the second set to replicate the analyses using the values of mean and standard deviation obtained from 

the first set (not practical in our setting due to limited time frame of data). 

3.2. The Model 

We formulate the distributor’s problem using a two-stage stochastic program with recourse. In stage 1 

(May of year t), the distributor determines the investment in futures of vintage t – 1 (denoted x1) and 

bottles of vintage t – 2 (denoted y1) of a single winemaker, respectively, with a limited budget (denoted B) 

and a value-at-risk (VaR) constraint. Distributors have a well-specified budget for each fine winemaker, 

and executives describe their risk tolerance in the form of a VaR constraint. Recall that f1 and b1 are the 
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unit price of futures and bottles in stage 1. For notational simplicity in this section, we normalize f1 = b1 = 

1 without loss of generality. At the end of stage 1 (September of year t), the distributor observes the 

realization (w, m) of weather and market random variables. We normalize the means to zero, i.e., E[ w ] = 

E[ m ] = 0. The probability density functions (pdf) of w  and m  are denoted ϕw(w) and ϕm(m) on 

respective support [wL, wH] and [mL, mH]. We let  = [wL, wH]  [mL, mH]. 

At the beginning of stage 2 (September of year t), the distributor determines the amount of futures to 

buy or sell (denoted x2) at price f2(w, m), and the amount of bottles to purchase (denoted y2) at price b2(m). 

The distributor can easily buy or sell futures by transferring the ownership rights through Liv-ex; the 

transaction does not require any physical flow of good and is not subject to any legal requirements. 

However, while the distributor can purchase bottles from the winemaker, the selling of bottles faces 

logistical and legal constraints. First, Bordeaux winemakers prefer shipping the bottled wine in the winter 

months to prevent any deterioration during transportation. Consequently, the bottles purchased in May of 

year t (stage 1) are not in distributor’s possession as of September of year t (stage 2). Hence, she cannot 

sell those bottles immediately at the beginning of stage 2. Second, selling a bottle to a different owner has 

legal constraints in the US where the sale of the bottle from one distributor located in another state can be 

considered as illegal movement of spirits. The combination of these two facts restrict the distributor from 

selling the bottled wine in September of year t (stage 2); these bottles are directly sold to the customers of 

the distributor (wholesalers, liquor stores, and consumers) at the end of stage 2. However, the distributor 

can buy additional bottles from the winemaker using either the cash leftover from stage 1 or from the sale 

of futures.  

 At the end of stage 2, the distributor collects revenues from futures (that are bottled by then) and 

bottles. Futures and bottle prices at the end of stage 2 are also uncertain. The uncertainty in futures price 

between September of year t and May of year t + 1 is captured by random variable fz . The realized 

futures price is f3(w, m) + zf. The uncertainty in bottle price between September of year t and May of year 

t + 1 is captured by random variable bz . The realized bottle price is b3(m) + zb. We assume that ( , )f bz z   is 

independent of ( , )w m  , and have a mean of zero, i.e., E[ fz ] = E[ bz ] = 0. Thus, E[f3(w, m) + fz ] = f3(w, 

m) and E[b3(m) + bz ] = b3(m). By examining our price data, we observe that if futures (bottle) price 

moves in one direction when it evolves from f1 to f2(w, m) (from b1 to b2(m)), then a wide majority of 

realized futures (bottle) prices at the end of stage 2 also move in the same direction when they evolve 

from f2(w, m) to f3(w, m) + zf (from b2(m) to b3(m) + zb). We insert the following assumptions that comply 

with this observation: 

If f2(w, m)  f1 , then E[f3(w, m) + fz ]  f2(w, m) for all   {>, =, <} and for all (w, m).     (5) 
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If b2(m)  b1 , then E[b3(m) + bz ]  b2(m) for all   {>, =, <} and for all m.       (6) 

All price functions f2(w, m), f3(w, m), b2(m) and b3(m), are linear in their arguments, and are net of 

transaction, shipping, and other costs, i.e., the prices reflect the net revenues in these two stages. Thus, the 

realized profit at the end of stage 2 can be expressed as follows:  

(x1, y1, w, m, x2, y2, zf, zb)  

= – x1 – y1 – f2(w, m)x2 – b2(m)y2 + [f3(w, m) + zf](x1 + x2) + [b3(m) + zb](y1 + y2).    (7) 

At the beginning of stage 2, the distributor selects x2 and y2 to maximize expected recourse profit 

subject to budget and VaR constraints given the initial investments in futures and bottles (x1, y1) and the 

realized values of weather and market random variables (w, m):  

 
2 2

1 1 2 2
,

max , , , , , , ,f b
x y

E x y w m x y z z                     (8) 

subject to 

f2(w, m)x2 + b2(m)y2 ≤ B – x1 – y1                                        (9) 

 1 1 2 2, , , , , , ,f bx y w m x y zP z                             (10) 

x2 ≥ ‒ x1                                             (11) 

y2 ≥ 0.                             (12) 

Inequality (9) is the second-stage budget constraint; the distributor can use the remaining budget from 

stage 1 in addition to the money generated through the sale of futures in stage 2 (when x2 < 0). Inequality 

(10) is the second-stage VaR constraint; the distributor requires that the probability of loss more than         

  (< B) is no more than . Alternatively said, the probability of realized profit less than –  should not 

exceed α. Inequality (11) indicates that the distributor cannot sell more futures in stage 2 than the amount 

purchased in stage 1. For given x1, y1, w, m, we let (x2
*, y2

*) denote the optimal solution, i.e.,  

      * *
2 1 1 2 1 1, , , , , , , , ,x x y w m y x y w m   =  

2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z     s.t. (9) – (12).  

Let zf and zb denote the realizations of fz  and bz  at fractile , i.e., f fP z z    =  b bP z z  = . We 

assume that zf < 0 and zb < 0, i.e., the fractile parameter is such that the risk-averse decision maker in 

September of year t is concerned about profit realizations in May of year t + 1 that are below expectation. 

We also assume that the VaR constraint is satisfied in the event the distributor invests the entire budget in 

bottles, i.e.,  

(1 – b3(mL) – zbα)B < .                  (13) 

This assumption is consistent with the practice of distributors who invest solely in bottled wine. 

At the beginning of stage 1, the distributor selects x1 and y1 to maximize expected profit at the end of 

stage 2 subject to budget and VaR constraints:  
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    
1 1

* *
1 1 2 1 1 2 1 1

, 0
max , , , , , , , , , , , , ,f b
x y

E x y w m x x y w m y x y w m z z


                              (14) 

subject to 

x1 + y1 ≤ B                           (15) 

    * *
1 1 2 1 1 2 1 1, , , , , , , , , , , , ,f bP x y w m x x y w m y x y w m z z          for all (w, m)        (16) 

Inequality (15) states that the distributor’s initial investment in futures and bottles cannot exceed the 

allotted budget B. Inequality (16) is the VaR constraint under a time-consistent risk measure (e.g., see 

Boda and Filar 2006 or Devalkar et al. 2015). Some first-stage decisions (x1, y1) can satisfy the VaR 

constraint in stage 1 but may not comply with the VaR constraint in stage 2; such decisions lead to time-

inconsistency and are not feasible in our model. To assure that risk aversion is time consistent over the 

planning horizon, the distributor must account for the VaR constraint in stage 2, and in particular, the 

choice of (x1, y1) must be such that there exists a solution to the stage-2 problem that satisfies the stage-2 

VaR constraint for any realization (w, m) of ( , )w m  . 

We focus on understanding how investment in futures and bottles affect performance ceteris paribus, 

and therefore, we assume equal and positive expected returns at the end of stage 2, i.e., 

E[f3( ,w m  ) + fz ] = E[b3( m ) + bz ] > 1.              (17) 

We relax this assumption in Section 4. 

3.3. Analysis 

We begin our analysis by partitioning the support  into three sets that identify realizations of  ,w m   

where the distributor would improve expected profit at the end of stage 2 by (1) selling futures, (2) buying 

futures, and (3) selling futures and buying bottles. 

Ω0 = {(w, m)   : f3(w, m)/f2(w, m) = b3(m)/b2(m) = 1} 

Ω1 = {(w, m)   : f3(w, m)/f2(w, m) < 1 and b3(m)/b2(m) < 1} 

Ω2 = {(w, m)   : f3(w, m)/f2(w, m)  max{b3(m)/b2(m), 1} \ Ω0} 

Ω3 = {(w, m)   : b3(m)/b2(m) ≥ max{f3(w, m)]/f2(w, m), 1}  Ω0}. 

We define m as b3(m)/b2(m) = 1 and f3(0, m)/f2(0, m) = 1, and w(m) as f3(w(m), m)/f2(w(m), m) = 1 

for m  m. Let  w
- = w(mL). Note that  

m < 0, w(m) < 0 for all m < m, and w(m) = 0            (18) 

(follows from (5), (6), (17)). In our analysis, we assume that  

m > mL and w(mL) > wL.                 (19) 

Note that the set 1 defines realizations where the expected return on futures and bottles over stage 2 is 

negative. A reversal of m > mL in (19) eliminates 1, which is advantageous to any decision-maker 
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regardless of whether she is risk-averse or risk-neutral. A reversal of w(mL) > wL in (19) (while keeping 

E[ w ] = 0) implies a reduced weather uncertainty on behalf of wine futures, reducing the riskiness of this 

asset. As a consequence, (19) represents a riskier condition, and thus, our results remain intact when (19)  

does not hold. Figure 3 illustrates the above notation.  

 We make use of expressions that rely on the solution to the stage-2 problem with the VaR constraint 

(10) relaxed, which we denote as  0 0
2 2,x y , i.e.,   

      0 0
2 1 1 2 1 1, , , , , , ,x x y w m y x y w m  =  

2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z     s.t. (9), (11), (12). 

 

Figure 3. Illustration of sets 1 – 3. Function w(m) is the line connecting points (w
-, wm) and (0, m). 

 

From the structure illustrated in Figure 3, it is clear that  0 0
2 2,x y  is given as follows: 

 0 0
2 2,x y =

   
      

       

1

1 1 2

1 1 1 2 1 2

,0                                                      if , 1
, ,0                       if , 2

, ,   if , 3

x w m
B x y f w m w m

x B x y f w m x b m w m

  


  
     

,  (20) 

(see Lemma A1 in the appendix for its derivation). Throughout our analysis we assume that, compared to 

no investment at the beginning of stage 1 (i.e., x1 = y1 = 0), an investment in some bottles increases 

expected profit:  

 
   1 1

0 0
1 1 2 2 1

, 0,0
, , , , , , ,f b

x y
E x y w m x y z z y


        > 0.           (21) 

In practice, (21) is likely to hold; otherwise, a distributor would not operate in this business. Inequality 

(21) implies that bottles command a higher expected return than holding cash in stage 1 as evidenced by 

purchases of bottles that occur each spring at the distributor motivating our study. 

Proposition 1. For any (x1, y1), 
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 0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

   


   
≥

 0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

   


   
 > 0.     (22) 

Proposition 1 states that, at the beginning of stage 1 and for any current investment level, additional 

investment in futures is more profitable than additional investment in bottles for a risk-neutral distributor, 

and that both investment alternatives are more profitable than holding cash. The result hints that futures 

offer an inherent advantage over bottles. This advantage stems from the additional flexibilities of liquidity 

(i.e., being able to sell futures after observing weather and market random variables) and swapping (i.e., 

the ability to sell futures and buy bottles). The appendix provides the derivations and the resulting 

expressions for the valuation of liquidity, swapping, the combination of liquidity and swapping, as well as 

the value of holding cash in stage 1. Proposition A1 in the appendix shows how these values (i.e., 

liquidity, swapping, the combination of liquidity and swapping, and holding cash) change with increasing 

variance in weather and market random variables. It is important to indicate that while the values of 

liquidity and cash increase with higher variance in weather and market, the values of swapping and the 

combination of liquidity and swapping increase with only higher variation in market, and not necessarily 

with higher variation in weather. As a consequence of these observations, the next proposition establishes 

the impact of variance in weather and market on the expected profit function.  

Proposition 2. When ϕw(w) and ϕm(m) follow symmetric pdf, (a)  0 0
1 1 2 2, , , , , , ,f bE x y w m x y z z       

increases in σm
2; (b)  0 0

1 1 2 2, , , , , , ,f bE x y w m x y z z       increases in σw
2 if the combined value from liquidity 

and swapping increases in σw
2.  

Proposition 2 shows that, for symmetric distributions, the expected profit increases in σm
2, however, it 

may increase or decrease in σw
2. Profit improvement from higher variation in market and weather 

uncertainty is enabled because of the recourse flexibility that allows the distributor to change its futures 

and bottles position based on the realization of the two random variables. When the value from the 

combination of liquidity and swapping increases in the variation in weather, then the expected profit also 

increases with higher degrees of weather uncertainty.  

The preceding analysis has focused on the stage-1 profit function for a risk-neutral distributor. We 

build on this analysis in our derivation of the optimal solution to the risk-averse distributor problem 

defined in (8) – (16) in Proposition 3 below. The proposition makes use of the following notation and 

inequalities: 

  x1
+ = /[1 – f2(wH, mL)] 

  x1
V = [ + zb B]/([1 – f2(wH, mτ)][1 + zb]) 

  y1
V = [ – [1 – f2(wH, mL)]x1

V]/[1 – b3(mL) – zb] 
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  x1
s = ( – B[1 – b3(mL) – zb])/[b3(mL) + zb – f2(wH, mL)]  

  y1
s = (B[1 – f2(wH, mL)] – )/[b3(mL) + zb – f2(wH, mL)] 

– zfα < /B                      (23) 

 
   

 
   

1 1

1 1

0 0
1 1 2 2 1

, 0,0

0 0
1 1 2 2 1

, 0,0

, , , , , , , /

, , , , , , , /

f b
x y

f b
x y

E x y w m x y z z y

E x y w m x y z z x





    

    

   

   
 <

 
 

3

2

1

1 ,
L b

H L

b m z

f w m
 


.       (24) 

The value of x1
+ is the number of futures that cause constraint (16) to be binding (i.e., satisfied 

exactly) at point (wH, mL) given that y1 = 0. The value of x1
V is the number of futures that cause constraint 

(16) to be binding (i.e., satisfied exactly) at point (wH, mτ), which is independent of the value of y1. The 

value of y1
V is the number of bottles that cause constraint (16) to be binding (i.e., satisfied exactly) at 

point (wH, mL) given that x1 = x1
V. The values of x1

s and y1
s are the number of futures and bottles, 

respectively, that cause constraint (16) at point (wH, mL) to be intersecting with the budget constraint (15). 

The value of x1
s is strictly smaller than x1

+ when x1
+ < B. 

Inequality (23) restricts the variation in the randomness in futures at the end of stage 2. It implies that 

having the entire budget invested in futures in stage 2 at point (w
-, mL) does not violate the VaR 

constraint (10). Note that at point (w
-, mL), the risk-neutral distributor would keep all futures, and 

purchase additional futures if the budget allows. Inequality (23) is a rather mild condition. Recall (13), 

which says the VaR constraint is not violated if the distributor uses the entire budget to purchase bottles at 

the beginning of stage 1 (a condition supported by observed practice), i.e., – zbα < /B – [1 – b3(mL)] < 

/B. A comparison of (23) with (13) shows that our model allows for greater uncertainty in the 

randomness in futures prices than that in bottle prices. Unlike (13), inequality (23) does not mean that 

investing the entire budget in futures in stage 1 would not violate the VaR constraint (16). Rather, 

investing the entire budget in futures in stage 1 under (23) may violate the VaR constraint (16) at (wH, m) 

and (wH, mL). 

Inequality (24) is used as a condition in characterizing the optimal solution. It compares the ratio of 

marginal returns from bottles to futures with the ratio of worst loss from bottles at α-fractile (i.e., 1 – 

b3(mL) – zb) to futures (1 – f2(wH, mL)) because the distributor can liquidate futures at the worst weather 

and market realization (wH, mL). When (24) holds, the firm prefers futures more than bottles even at the 

worst realizations of weather and market random variables; when the opposite of (24) holds, the firm 

prefers bottles over futures. 

 The following proposition characterizes the optimal solution in both stages.  

Proposition 3. When (23) holds and  ,f bz z   follow a bivariate normal distribution, 

(a) If {x1
+, x1

V}  B, then (x1
*, y1

*) = (B, 0) and (x2
*, y2

*) = (x2
0, y2

0);  
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(b) If x1
V < B ≤ x1

+, then (x1
*, y1

*) = (x1
V, B – x1

V) and (x2
*, y2

*) = (x2
0, y2

0); 

(c) If x1
+ < {x1

V, B}, then  

(i) if (24) holds, then (x1
*, y1

*) = (x1
+, 0) and (x2

*, y2
*) = (x2

0, y2
0); 

(ii) if (24) does not hold, then (x1
*, y1

*) = (x1
s, y1

s) and (x2
*, y2

*) = (x2
0, y2

0); 

(d) If x1
s < x1

V ≤ x1
+ < B, then 

(i) if (24) holds, then (x1
*, y1

*) = (x1
V, y1

V) and (x2
*, y2

*) = (x2
0, y2

0); 

(ii) if (24) does not hold, then (x1
*, y1

*) = (x1
s, y1

s) and (x2
*, y2

*) = (x2
0, y2

0); 

(e) If x1
V ≤ x1

s < x1
+ < B, then (x1

*, y1
*) = (x1

V, B – x1
V) and (x2

*, y2
*) = (x2

0, y2
0). 

Proposition 3 leads to our main conclusion: It is always optimal to invest in at least some futures 

because
*
1x > 0 in all conditions (see the proof). While it is optimal to invest in futures, it is not necessarily 

to do so in bottles as in the conditions designated in Proposition 3(a) and 3(c)(i). This result holds true in 

spite of the additional uncertainty from weather that is present in futures which is not present in bottles. It 

should also be noted here that Propositions 3(a) and 3(c)(i) do not require that  ,f bz z   follow a bivariate 

Normal distribution. 

The preceding analysis has built the second-stage results using the fact that the firm can invest its 

entire budget in futures in stage 2, i.e., when (23) holds. However, when (23) does not hold, the optimal 

second-stage decisions can be restricted by the VaR constraint (10); thus, x2
* can be less than x2

0. The next 

proposition shows that the firm should invest a positive amount of money in futures even if the second-

stage decisions are limited by the VaR constraint (10).  

Proposition 4. When ϕw(w) follows a symmetric pdf and  ,f bz z   follow a bivariate normal distribution, 

 * *
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

   


   
≥

 * *
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

   


   
 > 0.      (25) 

In conclusion, combining the results of propositions 3 and 4, our analysis shows that the firm should 

always make a positive investment in wine futures despite the fact that they are tagged as the riskier asset 

when compared to bottled wine. This is a robust result because it holds under various general conditions, 

regardless of whether (23) holds or not.  

4.  Financial Benefits from Our Proposed Model  

Our work is motivated by the world’s largest wine distributor that does not invest in wine futures due to 

lack of knowledge about futures prices and their evolution to bottle prices. How significant is the 

economic benefit from investing in wine futures? This section demonstrates the financial benefits from 

using our model and trading futures compared with a benchmark of a distributor that trades only bottled 
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wine. The appendix provides a detailed description of our data set (provided by Liv-ex) for the 44 leading 

Bordeaux winemakers used in our analysis.  

We first calibrate our empirical models (models 1A, 1B, 2A, and 2B) to estimate the coefficients of 

weather and market variables for calendar year t  {2008, 2009, 2010}. Using these coefficient estimates, 

we then solve the distributor’s problem of allocating budget between the futures of vintage t – 1 and the 

bottles of vintage t – 2 for each winemaker j  {1,…, 44} independently in May of calendar year t  

{2011, 2012}. Thus, the distributor plans her trading strategy for each winemaker independent of other 

winemakers. 

In May of calendar year t  {2011, 2012}, we assume that the distributor knows the distributions of 

all four random variables: w , m , fz , and bz . We use the five most-recent observations of weather and 

market random variables (w and m) in order to construct 25 equally likely scenarios for ( ,w m  ), resulting 

in discrete uniform distributions, such that E[ w ] = E[ m ] = 0. Furthermore, we use the residuals from 

models 1B and 2B in order to construct the distributions of fz  such that E[ fz ] = 0 and bz  such that E[ bz ] 

= 0, respectively. From these two distributions, we identify the α-fractile values corresponding to the 

values of zfα and zbα in our model.  

In May of calendar year t  {2011, 2012}, the distributor knows the actual futures and bottle prices 

(f1 and b1, respectively) for each winemaker from our data. Using the coefficient estimates from our 

empirical models, we then compute the prices in September of calendar year t (i.e., f2(w, m) and b2(m)) 

and in May of calendar year t + 1 (i.e., f3(w, m) + zf and b3(m) + zb) for given realizations of all four 

random variables. 

We assume that the distributor’s tolerable loss is 20% of budget (i.e.,  = 0.2B), and we capture the 

effect of varying risk aversion by evaluating performance at   {1, 0.20, 0.10}. The case of  = 1 

corresponds to a risk-neutral distributor, whereas  = 0.20 and  = 0.10 correspond to low risk-averse and 

high risk-averse distributors, respectively. We emphasize, however, that our results are independent of the 

choice of B, and we use B = 10000 in our numerical illustrations. 

We denote E[Π1
j,t(x1

*, y1
*)] as the optimal profit coming from winemaker j who invests in futures and 

bottled wine in year t, and E[Π1
j,t(0, y1

**)] as the expected profit from the distributor’s current practice of 

investing only in bottled wine with no investment in futures, i.e., (x1, x2) = (0, 0). We define the financial 

benefit from using our model as follows: 

Δj,t = (E[Π1
j,t(x1

*, y1
*)] – E[Π1

j,t(0, y1
**)])/E[Π1

j,t(0, y1
**)]           (26) 

Table 3 summarizes the benefits from using our model of investing in futures, bottles and leaving 

cash under budget (equal for each winemaker) and VaR constraints described in (8) – (16). It presents the 
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average benefit in this study as j = (1/2)∑t(Δj,t) for each of the Bordeaux winemakers at different levels 

of risk aversion using tighter requirements regarding the probability of loss ().  

 

Winemaker (j) 

Risk 
Neutral 

j  

Low Risk 
Aversion 

j  

High Risk 
Aversion 

j  Winemaker (j) 

Risk 
Neutral 

j  

Low Risk  
Aversion 

j  

High Risk 
Aversion 

j  

Angelus 4.45% 7.40% 10.00% Lagrange St Julien 23.67% 23.67% 23.67% 

Ausone 48.33% 53.18% 54.32% Latour 70.13% 78.21% 78.84% 

Beychevelle 0.00% 0.00% 0.00% Leoville Barton 18.63% 18.63% 21.58% 

Calon Segur 1.88% 1.88% 1.88% Leoville Las Cases 28.20% 24.78% 25.92% 

Carruades de Lafite 37.10% 51.70% 56.93% Leoville Poyferre 36.72% 23.82% 23.39% 

Cheval Blanc 29.71% 34.44% 36.89% Lynch Bages 20.97% 20.97% 20.97% 

Clos Fourtet 38.92% 38.96% 39.30% Margaux 31.84% 50.52% 53.81% 

Conseillante 10.69% 5.95% 5.35% Mission Haut Brion 9.50% 12.99% 12.62% 

Cos d'Estournel 36.04% 31.53% 31.99% Montrose 14.90% 14.07% 17.98% 

Ducru Beaucaillou 0.00% 2.30% 4.33% Mouton Rothschild 10.93% 20.65% 22.62% 

Duhart Milon 10.35% 8.94% 12.74% Palmer 0.00% 0.00% 0.00% 

Eglise Clinet 13.28% 21.90% 21.71% Pavie 24.46% 25.99% 28.53% 

Evangile 14.48% 33.16% 34.81% Pavillon Rouge 5.00% 5.00% 5.00% 

Figeac 84.78% 76.61% 74.73% Petit Mouton 3.69% 3.69% 3.69% 

Fleur Petrus 24.80% 30.97% 46.23% Petrus 21.31% 17.63% 16.70% 

Forts Latour 30.24% 30.24% 30.24% Pichon Baron 17.06% 17.06% 17.06% 

Grand Puy Lacoste 25.13% 26.18% 27.41% Pichon Lalande 10.29% 5.85% 7.49% 

Gruaud Larose 7.34% 7.34% 7.34% Pin 5.00% 5.12% 6.04% 

Haut Bailly 1.38% 1.38% 1.38% Pontet Canet 10.44% 10.44% 10.44% 

Haut Brion 9.91% 11.94% 14.32% Talbot 0.00% 0.00% 0.00% 

Lafite Rothschild 22.06% 43.32% 47.28% Troplong Mondot 32.24% 31.29% 31.21% 

Lafleur 55.74% 35.73% 33.29% Vieux Chateau Certan 21.33% 29.73% 31.83% 
Risk Neutral       Low Risk Aversion      High Risk Aversion 

                                                                                                            

                        Average          21.45%                      22.98%                       24.29% 

Table 3. The average financial benefit 44j

j
   where j is the average profit improvement for 

winemaker j, B = 10000 and β = 2000; and, α  {1, 0.20, 0.10} for risk neutral, low risk aversion, and 
high risk aversion, respectively. 

 

These results show that even the largest distributors, which can be assumed to be risk neutral, would 

significantly benefit from investing in wine futures. The average expected profit improvement from these 

44 Bordeaux wineries is 21.45% where the largest average improvement is observed at 84.78% at Figeac. 

In our numerical analysis, we relax the assumption that wine futures and bottled wine have equal 
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expected returns as designated in (17). As a consequence of this relaxed constraint, the improvement from 

investing in wine futures can disappear when E[f3( ,w m  ) + fz ]/f1 is significantly smaller than E[b3( m ) + 

bz ]/b1. Wine futures of four winemakers (e.g., Beychevelle) does not improve profits for the distributor. 

Table 3 also demonstrates that our model leads to greater benefits in the presence of risk aversion. We 

observe that higher degrees of risk aversion increases the average profit improvement to 22.98% and 

24.29%, respectively. In effect, the introduction of risk aversion on the benchmark case may force the 

distributor to hold excess cash, i.e., y1
** < B/b1. However, the flexibility of futures may lead to a greater 

total investment in stage 1 (i.e., f1x1
* + b1y1

* > b1y1
**) that translates into greater average improvement 

than that for a risk-neutral distributor where f1x1
* + b1y1

* = b1y1
** = B. This also indicates that relaxing (13) 

makes the benefits of our model even more profound. Therefore, we can conclude that our model 

advocating the trading of wine futures is generally more beneficial for risk-averse distributors. Though, 

risk aversion does not have a monotone impact, i.e., the average profit improvement can decrease for 

some winemakers (e.g. Conseillante) with higher risk aversion.  

The financial benefits reported in Table 3 have significant implications for the wine industry as it 

complements the discussion regarding the need to establish a wine futures market in the US. Noparumpa 

et al. (2015) has shown that Bordeaux winemakers improve their profits by approximately 10% due to the 

wine futures market, and small and artisanal winemakers in the US can increase their profits by 

approximately 15%. Their study shows the positive effect through the use of tasting expert opinions. 

Table 3 shows that winemakers are not the only constituent benefiting from the wine futures market, and 

more importantly, wine distributors can benefit significantly when price evolutions can be predicted and a 

wine futures market is established in the US. In our finding, we utilize a different information, weather 

and market fluctuations, in demonstrating the financial benefits for distributors. 

5.  Conclusions 

We have examined a wine distributor’s problem that arises in May of every year, involving the selection 

between wine futures of the previous year’s vintage and bottled wine made from grapes harvested two 

years ago.  

Our paper makes three significant contributions. First, we develop an analytical model in order to 

determine the optimal selection of bottled wine and wine futures under weather and market uncertainty. 

The model is built on an empirical foundation where we explain the price evolution of futures and bottles 

based on the weather of the upcoming vintage and changes in market conditions. The analytical model 

employs the following information from the empirical analysis that uses a comprehensive data set 

regarding the trade of 44 most influential Bordeaux winemakers: (1) Futures price of a vintage is 

negatively influenced by a warmer growing season for the upcoming vintage, leading to a lower bottle 
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price; (2) bottle prices are not influenced by weather conditions; and, (3) improving market conditions 

lead to increases in futures and bottle prices. We describe the market fluctuations through the changes in 

the Liv-ex 100 index. In this end, the identification of the Liv-ex 100 index as an explaining variable of 

the fluctuations in young wine prices also constitutes another contribution to the literature. 

Second, we describe the optimal selection of bottled wine and wine futures with a limited budget and 

using a value-at-risk measure under weather and market uncertainty. We develop the structural properties 

of the optimal decisions. We conclude that a distributor should always invest in wine futures because it 

increases expected profit despite being a riskier asset than bottled wine.  

Third, we demonstrate the financial benefits from using our analytical model through the numerical 

illustration using the same data for a large wine distributor. The hypothetical average profit improvement 

is significant, and is higher than 21% under the assumption of equal budget allotted for each winemaker. 

Moreover, the hypothetical average profit improvement becomes higher under risk aversion. Considering 

the wine distributor with a revenue of $11.4 Billion that motivated our study, our analysis constitutes a 

significant economic benefit from our proposed model.  

In addition to these three main findings, we also demonstrate the impact of variation in weather and 

market uncertainty on the distributor’s profitability. We show that higher variation in market uncertainty 

increases the expected profit, however, higher variation in weather can cause both an increase and a 

decrease in expected profit.  

Our findings have significant implications for the wine industry as it is likely to encourage wine 

distributors to invest in wine futures with better information and expectation. Moreover, it is likely to 

increase the trading volume in the financial platform Liv-ex, resulting in even better information than 

what our sample provides.  

While the motivation for our empirical and analytical work stems from the wine industry, our 

modeling perspective applies to a wide range of products and services. In the wine industry, the weather 

information for the upcoming vintage can be perceived as an information signal that causes a re-

evaluation of the quality perception in the eyes of the consumers. There are various industries that have 

similar structures. In the technology industry, for example, the information regarding the release of new 

products often negatively influences the price of the current products. This is similar to the consequences 

of observing an improved weather condition during the growing season of the upcoming vintage. What is 

unique in our study, however, is that the upcoming vintage’s weather information, when it is a relatively 

colder summer, can lead to an increase in the price of the current vintage. This kind of price increase 

cannot be observed in the technology industry through new information regarding the upcoming products.  

The increase in prices are only observed after a significant amount of time as in valuable antiques. 

However, the price increase in our study occurs without having to wait for a long period of time. Thus, 
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the problem investigated here has unique features as it combines similar characteristics of information 

signaling from various industries for a single product and in a short span of time.  

Our study has some limitations. Longer time series data can be used to test and enrich the price 

evolution of wine futures and bottled wine. Our study employs data only from the most popular Bordeaux 

winemakers and ignores fine wine producers from other regions. Our work also sheds light into future 

research directions. A longer time series data can help develop models that predict the price of wine 

futures and bottled wine. Such prediction models can help other parties, e.g. restaurateurs and investors 

who engage in the trade of wine. Our model can be expanded to consider other financing options such as 

debts and loans in order to increase the distributor’s budget allocation. Our study, along with Noparumpa 

et al. (2015), lead to an elevated desire to establish a futures market in the US. Future research needs to 

address regulatory policies and legal requirements in order to arrive at an economically healthy futures 

market. Moreover, future research can examine the benefits of dynamically adjusting the distributor’s 

budget each year in a multi-period setting.  
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Appendix 
Wine Analytics: Fine Wine Pricing and Selection under Weather and Market Uncertainty 

Details of Empirical Foundation: Data Collection and Sample Selection 
Wine price data is collected from Liv-ex (www.liv-ex.com), the world’s largest database for fine wine 
prices. Our sample is composed of five vintages of wine futures (2007 to 2011) and five vintages of 
bottled wine (2006 to 2010) of 44 Bordeaux wines that aggregates the price data of 43,837 transactions 
(10,451 via wine futures) corresponding to a total trade volume of 520,133 bottles. 

We refer to the Liv-ex Bordeaux 500 index (shortly, Liv-ex 500) when determining the wines to be 
examined. This index is composed of the 10 most recent bottled vintages of 50 leading Bordeaux wines. 
Among those 50 wines, sweet Sauternes wines (Yquem, Climens, Coutet, Suduiraut, and Rieussec) are 
excluded from the sample since their production process and timeline are different than the traditional 
Bordeaux wines. Another wine, Bahans/Clarence Haut Brion, is also excluded from the analysis due to 
missing price data. The final sample is composed of 44 of the 50 leading Bordeaux winemakers. 

The weather information is gathered for the Merignac station from TuTiempo.net. Daily maximum 
temperatures are collected for each growing season (i.e., May 1 – August 31) for the years from 2006 to 
2012. We then calculate the average growing season temperature for every year. 

Market fluctuations are captured through the Live-ex Fine Wine 100 index (shortly, Liv-ex 100). The 
percentage change in Liv-ex 100 index over each growing season (i.e., May 1 – August 31) is obtained 
for the years from 2008 to 2012. The 100 most sought-after wines belong to older vintages than the 
vintages used in our sample, and therefore, there is no overlap of wines with our sample. 

Can our Liv-ex 100 index can be replaced with another financial market variable? We find Liv-ex 
100 to be a strong indicator that is distinct from traditional financial indices. This can be seen from the 
correlation coefficients between the Liv-ex 100 index and the three popular financial indicators during 
same time period with our data involving futures and bottle prices between 2007 and 2014: The 
correlation coefficient with the Standard & Poor 500 index is –0.03, with the Financial Times 100 index 
is 0.11, with the Dow Jones index is 0.04 whereas the correlation coefficients between these three 
financial indices range from 0.92 to 0.99. Thus, Liv-ex 100 is not an arbitrarily chosen market indicator. 

Proofs and Derivations 

Lemma A1.     0 0
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Proof of Lemma A1. The first derivatives of the stage-2 objective function (8) are 

∂E[  1 1 2 2, , , , , , ,f bx y w m x y z z   ]/∂x2 = f3(w, m) – f2(w, m)           (27) 

∂E[  1 1 2 2, , , , , , ,f bx y w m x y z z   ]/∂y2 = b3(m) – b2(m).           (28) 

We see that the decision that maximizes expected profit simply depends on the relative profitability of 
futures and bottles for a given (w, m). In Ω1, both (27) and (28) are negative (neither futures nor bottles 
are profitable on expectation) which leads to 0

2x  = – x1 and	 0
2y  = 0 due to (11) and (12). In Ω2, (27) is 

nonnegative and greater than (28) (futures are more profitable on expectation) which leads to 0
2x  = [B – x1 

– y1]/f2(w, m) and 0
2y  = 0 due to (9) and (12). In Ω3, (28) is nonnegative and no smaller than (27) (bottles 

are more profitable on expectation) which leads to 0
2x  = – x1 and	 0

2y  = [B + (f2(w, m) – 1)x1 – y1]/b2(m) 
due to (9) and (11).  
We denote the value created from the futures liquidation option with Vl. We first partition Ω3 into the 
following two sets: Ω3A = {(w, m): b3(m)/b2(m) ≥ 1 > f3(w, m)/f2(w, m)},Ω3B = {(w, m): b3(m)/b2(m) ≥ 
f3(w, m)/f2(w, m) ≥ 1}. Futures do not provide a profitable return in Ω3A, and continue to be profitable but 
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dominated by the returns from bottles in Ω3B. The distributor would sell futures in sets Ω1 and Ω3A in 
order to avoid any further losses. The value created from liquidity is: 

        2 3

1 3

, ,
A

l w mV f w m f w m w m dwdm 
 

   ≥ 0.          (29) 

In set Ω3A futures are not profitable, and the distributor sells them and swaps them with bottles. In 
Ω3B the distributor also benefits from the ability to swap futures, even though they are still profitable We 
denote the value created from the swapping flexibility with Vs, can express it as follows:  

   
       3

2 3
23

, ,s w m

b m
V f w m f w m w m dwdm

b m
 



 
   

 
  ≥ 0.         (30) 

 We next define the value gained from liquidation and swapping with Vls. The distributor benefits 
from both liquidating and swapping in set Ω3A; discounting the double counting, we get:  

        2 3

3

, ,
A

l s l s w mV V V f w m f w m w m dwdm 


    ≥ 0.         (31) 

The distributor can benefit from holding cash in stage 1. This money can be used to purchase futures 
in Ω2 and bottles in Ω3. The value from holding cash in stage 1, denoted Vc, can be described as:  

 
 
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f w m b m
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f w m b m
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   
         

   
   ≥ 0.     (32) 

Using this notation, we can open up the expressions that appear in Proposition 1 (see the proof of 
Proposition 1 for supporting detail): 

 0 0
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 0 0
1 1 2 2 1, , , , , , ,f b l sE x y w m x y z z y V 

         .  

Proof of Proposition 1. Using (x2
0, y2

0) (see Lemma A1), we have 
∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = E[b3( m ) + bz ]
1

( ) ( )w mw m dwdm 



     3 2

2

, , ( ) ( )w mf w m f w m w m dwdm 


     3 2

3

( ) ( )w mb m b m w m dwdm 


       

= E[b3( m ) + bz ] – 1 – Vc                   (33) 
which is nonnegative because both integrands are nonnegative by definitions of Ω2 and Ω3. 

∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 = E[f3( ,w m  ) + fz ]

1

( ) ( )w mw m dwdm 


  

    3 2

2

, , ( ) ( )w mf w m f w m w m dwdm 


     3 2

3

( ) ( )w mb m b m w m dwdm 


  

        2 3

1

, , w mf w m f w m w m dwdm 


     
       3

2 3
23

, , w m

b m
f w m f w m w m dwdm

b m
 



 
   

 
    

= E[f3( ,w m  ) + fz ] – 1 – Vc  + Vls                       (34) 

which is nonnegative because both integrands are nonnegative by definitions of Ω1 and Ω3. 
Note that E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )] is linear in x1 and y1. As a consequence, (33) is positive for 

any (x1, y1) following from (21). Moreover, following from (17), 
∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 – ∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = Vls 

which is nonnegative for any (x1, y1).  
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We next examine the impact of increasing variation in uncertainty both in weather and market random 
variables (denoted σw

2 and σm
2, respectively) on an investment strategy in stage 1. Due to the linearity of 

the futures and bottle price functions, the expected prices  2 ,E f w m    ,  3 , fE f w m z     ,  2E b m    , 

and  3 bE b m z      do not change with different values of σw
2 and σm

2. Moreover, in the absence of a 

recourse flexibility that enables a wine distributor to change her futures and bottle positions, the expected 
profit would not change with increasing values of σw

2 and σm
2. However, the values from liquidity, 

swapping, and combination flexibilities, and cash, denoted Vl, Vs, Vls, and Vc in (29) – (32) change with 
higher values of σw

2 and σm
2. Under symmetric pdfs for weather and market random variables, i.e., ϕw(w) 

= ϕw(– w) with wH = – wL and ϕm(m) = ϕm(– m) with mH = – mL, the following proposition establishes their 
behavior with respect to σw

2 and σm
2. 

Proposition A1. When ϕw(w) and ϕm(m) follow symmetric pdf, (a) the value from liquidity Vl in (29) 
increases in σw

2 and σm
2; (b) the value from cash Vc in (32) increases in σw

2 and σm
2; (c) the value from 

swapping Vs in (30) increases in σm
2; (d) the value from the combination of liquidity and swapping Vls in 

(31) increases in σm
2. 

Proof of Proposition A1. Recall that E[f3(w, m) + fz ] = f3(w, m) and E[b3(m) + bz ] = b3(m). The price 

evolution of futures is already described as ∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 0 and ∂f3(w, m)/∂m > ∂f2(w, 
m)/∂m > 0, and bottles as ∂b3(m)/∂m > ∂b2(m)/∂m > 0.  
(a) With higher values of σw

2 for a symmetric pdf for ϕw(w), regions 1 and 3A expand. Because ∂f3(w, 
m)/∂w < ∂f2(w, m)/∂w < 0, Vl in (29) would be adding increasing values of f2(w, m) – f3(w, m) at each 
increment of wH. Thus, Vl in (29) increases in σw

2. Similarly, with higher values of σm
2 for a symmetric pdf 

for ϕm(m), region 1 expands. Because ∂f3(w, m)/∂m > ∂f2(w, m)/∂m > 0, Vl in (29) would be adding 
increasing values of f2(w, m) – f3(w, m) at each reduction in mL. Thus, Vl in (29) increases in σm

2.  
(b) Increasing σw

2 for a symmetric pdf for ϕw(w) implies expanding region 2 by reducing wL where f3(w, 
m)/f2(w, m) > 1 by definition of the set. Because ∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 0, we would be adding 
increasing values of [(f3(w, m)/f2(w, m)) – 1]. Similarly, increasing σw

2 for a symmetric pdf for ϕw(w) 
implies expanding region 3 by increasing wH where b3(m)/b2(m) > 1 by definition of the set. Because 
∂b3(m)/∂w = ∂b2(m)/∂w = 0 and we would not be changing the second term of Vc in (32). The changes 
region 2 is positive, and therefore, Vc in (32) increases in σw

2. A similar proof follows for the impact of 
σm

2. Increasing σm
2 for a symmetric pdf for ϕm(m) implies expanding region 2 by reducing mL and 

increasing mH where f3(w, m)/f2(w, m) > 1 by definition of the set. Because ∂f3(w, m)/∂m > ∂f2(w, m)/∂m > 
0, we would be adding increasing values of [(f3(w, m)/f2(w, m)) – 1]. Similarly, increasing σm

2 for a 
symmetric pdf for ϕm(m) implies expanding region 3 by increasing mH where b3(m)/b2(m) > 1 by 
definition of the set. Because ∂b3(m)/∂m > ∂b2(m)/∂m > 0, we would be adding increasing values of 
[(b3(m)/b2(m)) – 1] to the second term of Vc in (32). The changes in region 2 and 3 are positive, and 
therefore, Vc in (32) increases in σm

2.  
(c) The value from swapping Vs in (30) is defined in 3. Increasing σm

2 for a symmetric pdf for ϕm(m) 
implies expanding 1 (by reducing mL) and 3 (by increasing mH). In 3, b3(m)/b2(m) > 1, and its value 
is increasing due to ∂b3(m)/∂m > ∂b2(m)/∂m > 0. At the new market realization greater than mH, we know 
that f2(w, m)[b3(m)/b2(m)] – f3(w, m) > 0 because of the definition of 3 (so that the firm swaps futures 
with a more profitable bottle investment). Thus, expanding the support beyond mH adds value and 
expanding the lower support below mL does not cause any loss; therefore, Vs in (30) is increasing in σm

2.  
(d) The proof follows from the proofs of parts (a) and (c).  
Proof of Proposition 2. (a) Increasing σm

2 for a symmetric pdf for ϕm(m) implies reducing mL and 
increasing mH. Reducing mL to mL –  (where  > 0) and increasing mH to mH +  leads to three cases for 
investigation.  Case 1: (w, mL – )  Ω1 and (w, mH + )  Ω3: Because ∂f3(w, m)/∂m > ∂f2(w, m)/∂m > 0 
and because bottles are even more profitable than futures in Ω3, the losses from the futures investment at 
(w, mL – )  Ω1 are smaller in absolute value than the gains (w, mH + )  Ω3, and thus, the expected 
profit increases.  Case 2: (w, mL – )  Ω1 and (w, mH + )  Ω2: If (w, mL – )  Ω1, then because ∂f3(w, 
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m)/∂m > ∂f2(w, m)/∂m > 0, the losses from the futures investment at (w, mL – )  Ω1 are smaller in 
absolute value than the gains (w, mH + )  Ω2, and thus, the expected profit increases. Case 3: (w, mL – 
)  Ω2 and (w, mH + )  Ω2: If (w, mL – )  Ω2, the losses from the futures investment at (w, mL – ) 
 Ω2 are recovered by the gains at (w, mH + )  Ω2 due to symmetry, and thus, the expected profit does 
not change. Combining the results from these three cases, the expected profit increases with higher levels 
of σm

2. (b) Using the proof of Proposition 1, the expected profit for any (x1, y1) pair is  

E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )] = [E[f3( ,w m  ) + fz ] – 1 – Vc  + Vls]x1 + [E[b3( m ) + bz ] – 1 – Vc]y1 + B Vc 

  = [E[f3( ,w m  ) + fz ] – 1 + Vls]x1 + [E[b3( m ) + bz ] – 1]y1 + (B – x1 – y1)Vc. 

Increasing σw
2 does not change E[f3( ,w m  ) + fz ] and E[b3( m ) + bz ]. Proposition A1(b) has shown that 

Vc is increasing in σw
2. Thus, it is sufficient to observe that ∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂σw
2 > 0 if the 

combined value from liquidity and swapping increases in σw
2, i.e., ∂Vls/∂σw

2 > 0.  
Lemma A2. [∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 |(x1, y1) = (0,0)]/[∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 |(x1, y1) = 

(0,0)] equals to [∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1]/[∂E[( 0 0

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1] for any (x1, y1). 

Proof of Lemma A2. Follows from the linearity of E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )] in x1 and y1, as shown 

in the proof of proposition 1.  
Development of the proof of Proposition 3 
We first define the following boundary sets: 2E = {(w, m) ∈ 2: m < m, w = w(m)} and 3E = {(w, m) 
∈ 3: m = m}. In the following analysis we examine the value of profit function (x1, y1, w, m, x2

0, y2
0, 

zfα, zbα) at three points, and use this analysis in the proof of Proposition 3. The three points identified in 
Figure A1 correspond the realizations of ( , )w m  that yields low values of (x1, y1, w, m, x2

0, y2
0, zfα, zbα). 

Lemma A3. If (23), then (x1, y1, w
-, mL, x2

0, y2
0, zfα, zbα) ≥ – β for any (x1, y1). 

Proof of Lemma A3. Note that (w
-, mL) ∈ Ω2E. This implies f3(w

-, mL)/f2(w
-, mL) = 1 by definition of 

set. Thus, the realized profit at (zfα, zbα) is 
(x1, y1, w

-, mL, x2
0, y2

0, zfα, zbα) = [b3(mL) + zbα – 1]y1 + zfα[B – y1].        (35) 
Note first that (35) independent of x1; because f3(w

-, mL)/f2(w
-, mL) = 1 and (5) imply that f3(w

-, mL) = 
f2(w

-, mL) = 1. Because mL < m, it follows that b3(mL)/b2(mL) < 1, and thus from (6) it follows that b3(mL) 
< b2(mL) < 1. Combined with zbα < 0 (by assumption), they imply b3(mL) + zbα – 1 < 0. Following from 
(13), we have [b3(mL) + zbα – 1]y1 > – β for any 0 ≤ y1 ≤ B. Furthermore, following from (23), we have 
zfα[B – y1] > – β for any 0 ≤ y1 ≤ B.  
 

 
Figure A1. Points (1) – (3) are candidates for the minimum value of (x1, y1, w, m, x2

0, y2
0, zfα, zbα).  

 
Lemma A4. If (23), then (x1, y1, w, m, x2

0, y2
0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω2 for any (x1, y1). 

Proof of Lemma A4. We first focus on (w, m) ∈ Ω2E, for which f3(w, m)/f2(w, m) = 1, which in turn 
implies f3(w, m) = f2(w, m) = 1 for all (w, m) ∈ Ω2E (see (5)). Thus, for any (w, m) ∈ Ω2E, 
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(x1, y1, w, m, x2
0, y2

0, zfα, zbα | (w, m) ∈ Ω2E) = [b3(m) + zbα – 1]y1 + zfα[B – y1] ≥ [b3(mL) + zbα – 1]y1 + 
zfα[B – y1] = (x1, y1, w

-, mL, x2
0, y2

0, zfα, zbα) ≥ – β where the first inequality follows from b3(m) 
increasing in m, and the last inequality follows from Lemma A3. 

Note that the expression above is independent of x1 because f3(w, m) = f2(w, m) = 1 for all (w, m) ∈ 
Ω2E. For any (w, m) ∈	Ω2\Ω2E, we have f3(w, m)/f2(w, m) > 1 (by the definition of Ω2). This implies that 
f3(w, m) > f2(w, m) > 1 (see (5)). Hence, the realized profit (x1, y1, w, m, x2

0, y2
0, zfα, zbα) is increasing in 

x1 for any (w, m) ∈	Ω2\Ω2E, and thus (x1, y1, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω2.  
Note that the profit at point (wH, mL) ∈ Ω1 is  

(x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) = [f2(wH, mL) – 1]x1 + [b3(mL) + zbα – 1]y1.     (36) 
We define x1

H(y1) which satisfies 1(x1
H(y1), y1, wH, mL, x2

0, y2
0, zfα, zbα) = – β for a given y1, i.e.,  

x1
H(y1) = [ – [1 – b3(mL) – zbα]y1]/[1 – f2(wH, mL)].            (37) 

Lemma A5. (x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) ≥ – β for any y1 ≤ B and x1 ≤ x1
H(y1). 

Proof of Lemma A5. We know that f2(wH, mL) < 1 and b3(mL) < 1 (follows from (wH, mL) ∈ Ω1, (5), and 
(6)). Also, zbα < 0 by assumption. Therefore, (x1, y1, wH, mL, x2

0, y2
0, zfα, zbα) in (36) is decreasing in x1 

and y1. This also implies that x1
H(y1) in (37) is decreasing in y1. For any y1  B (due to (13)) and x1  

x1
H(y1), (x1, y1, wH, mL, x2

0, y2
0, zfα, zbα) ≥ (x1

H(y1), y1, wH, mL, x2
0, y2

0, zfα, zbα) = – β.  
Lemma A6. (x1, y1, w, m, x2

0, y2
0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω1 for any y1 ≤ B and x1 ≤ x1

H(y1). 
Proof of Lemma A6. Since f2(w, m) and b3(m) are increasing in m, and f2(w, m) is decreasing in w, 
(x1, y1, w, m, x2

0, y2
0, zfα, zbα | (w, m) ∈ Ω1) = [f2(w, m) – 1]x1 + [b3(m) + zbα – 1]y1 ≥ [f2(wH, mL) – 1]x1 + 

[b3(mL) + zbα – 1]y1 = (x1, y1, wH, mL, x2
0, y2

0, zfα, zbα) ≥ – β where the last inequality follows from Lemma 
A5.  
Lemma A7. (x1, y1, wH, m, x2

0, y2
0, zfα, zbα) ≥ – β for any x1 ≤ x1

V. 
Proof of Lemma A7. Note that (wH, m) ∈ Ω3E implies b3(m)/b2(m) = 1. This further implies b3(m) = 
b2(m) = 1 (due to (6)). Thus,  

(x1, y1, wH, m, x2
0, y2

0, zfα, zbα) = [f2(wH, m) – 1][1 + zbα]x1 + zbαB.       (38) 
Note that the expression above is independent of y1. It is decreasing in x1 for two reasons: First, (wH, m) ∉ 
Ω2 implies that f3(wH, m)/f2(wH, m) < 1 which further implies f3(wH, m) < f2(wH, m) < 1 (due to (5)), and 
second, 1 + zbα > 0 (due to (13) and β < B). 

We define x1
V which satisfies (x1

V, y1, wH, m, x2
0, y2

0, zfα, zbα) = – β for any y1, i.e., 
x1

V = [ + zb B]/([1 – f2(wH, mτ)][1 + zb]).              (39) 
Therefore, (x1, y1, wH, m, x2

0, y2
0, zfα, zbα) ≥ (x1

V, y1, wH, m, x2
0, y2

0, zfα, zbα) = – β for any x1 ≤ x1
V.  

Lemma A8. (x1, y1, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω3 for any x1 ≤ x1
V. 

Proof of Lemma A8. We first focus on (w, m) ∈ Ω3E, for which b3(m) = b2(m) = 1 (follows from the 
definition of Ω3E and (6)). The realized profit can be expressed as 
(x1, y1, w, m, x2

0, y2
0, zfα, zbα | (w, m) ∈ Ω3E) = [f2(w, m) – 1][1 + zbα]x1 + zbαB  ≥ [f2(wH, m) – 1][1 + 

zbα]x1 + zbαB = (x1, y1, wH, m, x2
0, y2

0, zfα, zbα) ≥ – β where the first inequality follows from f2(w, m) 
decreasing in w, and the last inequality follows from Lemma A7. 

Note that the expression above is independent of y1 because b3(m) = b2(m) = 1 for all (w, m) ∈ Ω3E. 
For any (w, m) ∈	Ω3\Ω3E, b3(m)/b2(m) > 1 by the definition of Ω3. This further implies that b3(m) > b2(m) 
> 1 (due to (6)). Hence, the realized profit at (zf, zb) increases in y1 for any (w, m) ∈	Ω3\Ω3E. Therefore,  

(x1, y1, w, m, x2
0, y2

0, zfα, zbα | (w, m) ∈ Ω3\Ω3E) ≥ – β.  
Lemma A9. Suppose that (23) holds. Then (x1, y1, w, m, x2

0, y2
0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω for any 

y1 ≤ B and x1 ≤ min{x1
H(y1), x1

V}. 
Proof of Lemma A9. Follows from lemmas A4, A6, and A8.  
Lemma A10. Suppose that (23) holds. Then P[(x1, 0, w, m, x2

0, y2
0, ,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω 

for any x1 ≤ min{x1
H(0), x1

V}. This means that (x2
0, y2

0) and (x1, 0) decisions such that x1 ≤ min{x1
H(0), 

x1
V} satisfy both (10) and (16). 
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Proof of Lemma A10. (x1, 0, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω1) has neither fz  nor bz  term. (x1, 0, w, 

m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω2) has only fz , and (x1, 0, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω3) has only bz . 

We also know from Lemma A9 that (x1, 0, w, m, x2
0, y2

0, zfα, zbα) ≥ – β for all (w, m) ∈ Ω for any x1 ≤ 

min{x1
H(0), x1

V} when y1 = 0. Combined with f fP z z    =  b bP z z  = , they imply that P[(x1, 0, w, 

m, x2
0, y2

0, ,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω for any x1 ≤ min{x1
H(0), x1

V}. As a consequence, VaR 

constraints (10) and (16) are satisfied by (x2
0, y2

0) and (x1, 0) decisions for x1 ≤ min{x1
H(0), x1

V}.  

Lemma A11. Suppose that (23) holds, and  ,f bz z   follow a bivariate normal distribution. Then P[(x1, 

y1, w, m, x2
0, y2

0, ,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω for any 0 < y1 < B and x1 ≤ min{x1
H(y1), x1

V}. This 

means that (x2
0, y2

0) and (x1, y1) decisions such that 0 < y1 < B and x1 ≤ min{x1
H(y1), x1

V} satisfy both (10) 
and (16). 
Proof of Lemma A11. Note first that y1 ≠ 0. (x1, y1, w, m, x2

0, y2
0, ,f bz z  | (w, m) ∈ Ω1Ω3) has only bz  

term. Combined with  b bP z z  = , and lemmas A6 and A8, it follows that P[(x1, y1, w, m, x2
0, y2

0,

,f bz z  ) < – β] ≤ α for all (w, m) ∈ Ω1Ω3 for any 0 < y1 < B and x1 ≤ min{x1
H(y1), x1

V}. 

(x1, y1, w, m, x2
0, y2

0, ,f bz z  | (w, m) ∈ Ω2) has both fz  and bz  terms. We first consider the case where 

fz  and bz  are perfectly positively correlated, i.e., fz = k bz  where k > 0. This implies  

P[ fz ≤ zfα & bz ≤ zbα] = P[k bz ≤ kzbα & bz ≤ zbα] = P[ bz ≤ zbα] = α. 

Together with Lemma A4, it follows that  
P[(x1, y1, w, m, x2

0, y2
0, ,f bz z  ) < – β] ≤ α              (40) 

for all (w, m) ∈ Ω2 for any (x1, y1). We then consider the less-than-perfect positive correlation case where 
( ,f bz z  ) follow a bivariate normal distribution. The randomness in profit can be expressed as 

Z
 = (x1 + x2

0) fz + (y1 + y2
0) bz  

where ρ is the correlation coefficient for ( ,f bz z  ). As a consequence of bivariate normal distribution, Z
 , 

which is the sum of normal random variables, is a normal random variable with  

E[ Z
 ] = 0 and V Z   

 =    2 20 2 0 2
1 2 1 2 2

f b f bz z z zx x y y          . 

From E[ fz ] = E[ bz ] = 0 and {zfα, zbα} < 0, it follows that α ≤ 0.5. Therefore, 

P[(x1, y1, w, m, x2
0, y2

0, ,f bz z  ) < – β] = P[ Z
 < – β – (x1, y1, w, m, x2

0, y2
0, 0, 0)]  P[ 1Z < – β – (x1, y1, 

w, m, x2
0, y2

0, 0, 0)] ≤ α for all (w, m) ∈ Ω2 for any (x1, y1). The first inequality follows from α ≤ 0.5 and 
the fact that variance is increasing in . The second inequality follows from (40), i.e., the case of perfect 
positive correlation. As a consequence, VaR constraints (10) and (16) are satisfied by (x2

0, y2
0) and (x1, y1) 

decisions such that 0 < y1 < B and x1 ≤ min{x1
H(y1), x1

V}.  
Proof of Proposition 3. We begin with relaxing (10), i.e., (x2, y2) = (x2

0, y2
0) is feasible. We then show 

that, when (23) holds, constraint (10) is nonbinding at the optimal solution to the problem defined in (8) – 
(16). From Proposition 1, we know that (x1, y1) = (0, 0) cannot be optimal. Moreover, x1

+ = x1
H(0) > 0 (see 

(37)) due to β > 0 and 1 > f2(wH, mL) (follows from (wH, mL) ∈ Ω1 and (5)). 
Part (a): When B ≤ min{x1

+, x1
V}, then (x2, y2) = (x2

0, y2
0) and (x1, y1) = (B, 0) satisfy both (10) and (16) 

following from Lemma A10. This implies that (x2
*, y2

*) = (x2
0, y2

0) by definition of (x2
0, y2

0). It follows 
from Proposition 1 that (x1

*, y1
*) = (B, 0). Part (b): Note that x1

V < x1
H(B – x1

V) when x1
V < B ≤ x1

+. 
Proposition 1 and Lemma A11 imply that (x2

*, y2
*) = (x2

0, y2
0) and (x1

*, y1
*) = (x1

V, B – x1
V). 
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Part (c): Note that x1
H(y1) is linearly decreasing in y1 (see (37)). As a consequence, when x1

+ < x1
V, we 

have x1
H(y1) < x1

V for any y1 ≥ 0. Moreover, E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )] is linear in x1 and y1 (see proof 

of Proposition 1). Therefore, 
dE[(x1

H(y1),
0 0

1 2 2, , , , , ,f by w m x y z z    )]/dy1 = ∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 

–
 
 

3

2

1

1 ,
L b

H L

b m z

f w m
  

 
  

∂E[( 0 0
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1. 

Part (c)(i): dE[(x1
H(y1),

0 0
1 2 2, , , , , ,f by w m x y z z    )]/dy1 < 0 due to (24) and Lemma A2. Following from 

Lemma A10, (x2, y2) = (x2
0, y2

0) and (x1, y1) = (x1
+, 0) satisfy both (10) and (16). Moreover, (15) is 

satisfied due to x1
+ < B. Therefore, together with Proposition 1, it follows that (x2

*, y2
*) = (x2

0, y2
0) and 

(x1
*, y1

*) = (x1
+, 0). Part (c)(ii): dE[(x1

H(y1),
0 0

1 2 2, , , , , ,f by w m x y z z    )]/dy1 ≥ 0 due to the reversal of (24), and 

Lemma A2. Note that x1
H(B) > 0 (see (13) and (37)). Together with x1

+ < B and the linearity of x1
H(y1) in 

y1, it follows that the VaR constraint (16) at (wH, mL) crosses the budget constraint at a single point, i.e., 
y1

s + x1
H(y1

s) = B  

such that
 

   
2

1

3 2

1 ,

,
H Ls

L b H L

B f w m
y

b m z f w m

    
    

 and    
   

3

1 1 1

3 2

1

,
L bs H s

L b H L

B b m z
x x y

b m z f w m




       
    

 

where {x1
s, y1

s} > 0 following from x1
+ < B and (13). Note also that x1

s < x1
+. Following from Lemma 

A11, (x2, y2) = (x2
0, y2

0) and (x1, y1) = (x1
s, y1

s) satisfy both (10) and (16). Therefore, together with 
Proposition 1, it follows that (x2

*, y2
*) = (x2

0, y2
0) and (x1

*, y1
*) = (x1

s, y1
s). Part (d): We now examine the 

case when x1
s < x1

V ≤ x1
+ < B. Part (d)(i): When x1

V = x1
+, it follows from the proof of part (c)(i). When x1

V 
< x1

+, x1
H(y1) linearly decreasing in y1 implies that there exists a single y1

V, i.e., x1
H(y1

V) = x1
V such that

 
 

 
 

 

2

2

1

3

1 ,

1 1 ,

1

H Lb

b HV

L b

f w mz B

z f w m
y

b m z



 






    
    
    

 where x1
V + y1

V < B (i.e., (15) is satisfied) due to x1
s < x1

V, x1
+ < B, 

and (13). dE[(x1
H(y1),

0 0
1 2 2, , , , , ,f by w m x y z z    )]/dy1 < 0 due to (24) and Lemma A2. Together with 

Proposition 1 and Lemma A11, it follows that (x2
*, y2

*) = (x2
0, y2

0) and (x1
*, y1

*) = (x1
V, y1

V). Part (d)(ii): 
Since x1

s < x1
V, it follows from the proof of part (c)(ii). Part (e): Note that x1

V ≤ x1
H(B – x1

V) when x1
V ≤ x1

s. 
Proposition 1 and Lemma A11 imply that (x2

*, y2
*) = (x2

0, y2
0) and (x1

*, y1
*) = (x1

V, B – x1
V).  

Proof of Proposition 4. Relaxing (23) does not affect the feasibility of (x2
0, y2

0) in Ω1 and Ω3 (see 
lemmas A6 and A8). However, (x2

0, y2
0) may no longer be feasible in Ω2 (see Lemma A4). From (7), the 

realized profit at -fractile is (x1, y1, w, m, x2, y2, zfα, zbα) = – x1 – y1 – f2(w, m)x2 – b2(m)y2 + [f3(w, m) + 
zfα](x1 + x2) + [b3(m) + zbα](y1 + y2) which is linear in zfα. Following from (11), ∂(x1, y1, w, m, x2, y2, zfα, 
zbα)/∂zfα ≥ 0. Therefore, it is sufficient to show that Proposition 4 holds at the extreme case such that zfα → 
– ∞. The result naturally extends to any other zfα, which may or may not satisfy (23). 

zfα → – ∞ implies that x2
* = – x1; otherwise, lim zfα → – ∞ (x1, y1, w, m, x2, y2, zfα, zbα) = – ∞. We 

partition Ω2 into the following two sets: Ω2A = {(w, m): f3(w, m)/f2(w, m) ≥ 1 > b3(m)/b2(m)}, Ω2B = {(w, 
m): f3(w, m)/f2(w, m) > b3(m)/b2(m) ≥ 1}. In Ω2A, y2

* = 0 due to 1 > b3(m)/b2(m). Thus, 
(x1, y1, w, m, x2

*, y2
*, zfα, zbα | (w, m) ∈ Ω2A) = [f2(w, m) – 1]x1 + [b3(m) + zbα – 1]y1 

                    ≥ [f2(wH, mL) – 1]x1 + [b3(mL) + zbα – 1]y1 
         = (x1, y1, wH, mL, x2

0, y2
0, zfα, zbα) ≥ – β        (41) 

where the first inequality follows from the fact that f2(wH, mL) and b3(mL) are the worst price realizations 
for f2(w, m) and b3(m), respectively, and the last inequality follows from Lemma A5. 

We next show that y2
* = [B – x1 – y1 + f2(w, m)x1]/b2(m) given that that x2

* = – x1 in Ω2B: 
(x1, y1, w, m, x2

*, y2
*, zfα, zbα | (w, m) ∈ Ω2B) = [f2(w, m) – 1][1 + [b3(m) + zbα – b2(m)]/b2(m)]x1 + [b3(m) + 

zbα – 1]y1 + [[b3(m) + zbα – b2(m)]/b2(m)][B – y1] where  
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[f2(w, m) – 1][1 + [b3(m) + zbα – b2(m)]/b2(m)]x1 ≥ 0            (42) 
following from x1 ≥ 0, f2(w, m) > 1 (due to the definition of Ω2B and (5)), and [b3(m) + zbα – b2(m)]/b2(m) 
> – β/B > – 1 (due to the definition of Ω2B, β < B, zbα < 0, (13)); 

[b3(m) + zbα – 1]y1 > – β                   (43) 
following from y1 ≤ B and (13); and 

[[b3(m) + zbα – b2(m)]/b2(m)][B – y1] > – β               (44) 
following from y1 ≤ B and [b3(m) + zbα – b2(m)]/b2(m) > – β/B > – 1 (due to the definition of Ω2B, β < B, 
zbα < 0, (13)). Inequalities (42), (43) and (44) together imply that  

(x1, y1, w, m, x2
*, y2

*, zfα, zbα | (w, m) ∈ Ω2B) > – β             (45) 
where x2

* = – x1 and y2
* = [B – x1 – y1 + f2(w, m)x1]/b2(m).  

Following from (41), (45), and lemmas A6 and A8,  

            
       

1* *
2 1 1 2 1 1

1 1 1 2 1 2

,0                                                     if , 1 2
, , , , , , ,

, ,   if , 3 2
A

B

x w m
x x y w m y x y w m

x B x y f w m x b m w m
          

. 

Thus,  
∂E[( * *

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = E[b3( m ) + bz ] 
1 2

( ) ( )
A

w mw m dwdm 
 

        

     3 2

3 2

( ) ( )
B

w mb m b m w m dwdm 
 

        

   = E[b3( m ) + bz ] – 1 – Vc′                      (46) 

where 
 
 

3

23 2

1 ( ) ( )
B

c w m

b m
V w m dwdm

b m
 

 

     
 

  which is nonnegative because the integrand is 

nonnegative by definitions of Ω2B and Ω3. Also, we have 

∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 = E[f3( ,w m  ) + fz ]

1 2

( ) ( )
A

w mw m dwdm 
 

 

    3 2

3 2

( ) ( )
B

w mb m b m w m dwdm 
 

           2 3

1 2

, ,
A

w mf w m f w m w m dwdm 
 

   

   
       3

2 3
23 2

, ,
B

w m

b m
f w m f w m w m dwdm

b m
 

 

 
   

 
  

= E[f3( ,w m  ) + fz ] – 1 – Vc′  + Vls′                    (47) 

where  

            
       3

2 3 2 3
21 2 3 2

, , , ,
A B

l s w m w m

b m
V f w m f w m w m dwdm f w m f w m w m dwdm

b m
   

   

       
 

   

Following from the definitions of Ω2B and Ω3, w(m) = 0 (see (18)), E[ w ] = 0, and the symmetry in 

w(w), we have    
       3

2 3
23 2

, , 0
B

w m

b m
f w m f w m w m dwdm

b m
 

 

 
   

 
 . Following from the 

definitions of Ω1 and Ω2A, w(m) < 0 for all m < m (see (18)), E[ w ] = 0, and the symmetry in w(w), we 

have         2 3

1 2

, , 0
A

w mf w m f w m w m dwdm 
 

  . Thus, Vls′ ≥ 0. Following from (17),  

∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂x1 – ∂E[( * *

1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 = Vls′ ≥ 0. 

Moreover, following from the definitions of Ω2 and Ω3, Vc′ ≤ Vc (see (32)). Recall that (21) implies (33) 
is positive (see the proof of Proposition 1). Thus, Vc′ ≤ Vc implies that (46) is positive, i.e.,  

∂E[( * *
1 1 2 2, , , , , , ,f bx y w m x y z z    )]/∂y1 > 0.  
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