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A rtemisinin combination therapy, the most effective malaria treatment today, is manufactured from an agriculturally
derived starting material Artemisia annua. Artemisinin, the main ingredient in malaria medicines, is extracted from

Artemisia leaves and used in the production of medicine for treating malaria. The artemisinin market has witnessed high
volatility in the supply and price of artemisinin extract. A large fraction of malaria medicines for endemic countries in
sub-Saharan Africa is financed by the Global Fund to Fight AIDS, TB, and Malaria and the US President’s Malaria Initia-
tive. These agencies together with the World Health Organization, UNITAID, the United Kingdom Department for Inter-
national Development and the Bill and Melinda Gates Foundation are exploring ways to increase the level of artemisinin
production, reduce volatility of artemisinin prices, and improve overall access to malaria medicines for the population.
We develop a model of the supply chain, calibrate the model using field data, and investigate the impact of various inter-
ventions. Our model shows that initiatives aimed at improving average yield, creating a support-price for agricultural
artemisinin, and a larger and carefully managed supply of semi-synthetic artemisinin have the greatest potential for
improving supply and reducing price volatility of artemisinin-based malaria medicine.
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1. Introduction

The World Health Organization (WHO) reports that
there were about 219 million cases of malaria in 2012
leading to at least 660,000 deaths (WHO 2012). The
vast majority of these deaths, corresponding to 90%,
occur in sub-Saharan Africa, and a large fraction of
them are children under five, pregnant women, and
malnourished people. Malaria continues to be one of
the most deadly diseases, calling for immediate atten-
tion from governments, pharmaceutical companies,
and aid organizations.
Due to significant levels of resistance against the

widely used drugs such as chloroquine and sulfadox-
ine pyrimethamine (SP), WHO has been recommend-
ing artemisinin combination therapy (ACT) as the
first-line treatment for uncomplicated Plasmodium fal-
ciparum malaria since April 2002 (WHO 2012). Today,
eighty-four countries and territories in Africa utilize
ACT as its first-line treatment of the disease. Unlike
previously used drugs to treat malaria such as

chloroquine and SP, ACTs are manufactured from a
starting material derived from a plant, Artemisia
annua; one of the artemisinin derivatives (artemether,
artesunate, or dihydroartemisinin) is combined with
another antimalarial compound such as lumefantrine,
amodiaquine, or piperaquine in order to obtain ACT.
There are eleven companies approved by the WHO to
manufacture ACTs.
Who pays for malaria treatment? Given that a large

fraction of people who get malaria cannot afford to
pay for the cost of treatment using ACT (which is
approximately $2 per adult treatment) and there are
no health insurance systems, treatments are often pro-
vided free by their governments in government-run
clinics. However, most malaria-endemic countries are
low-income countries and have to rely on interna-
tional donor support to purchase malaria treatments
for their population. The majority of ACTs are
financed by international agencies, most notably the
Global Fund to Fight AIDS, TB, and Malaria and the
US President’s Malaria Initiative. Some patients seek
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treatment in the private sector and pay for malaria
medicines out of pocket.
Our work responds to the needs of multilateral

agencies and philanthropic organizations that are
considering and pursuing interventions that affect the
availability and price of ACTs and its main ingredient
artemisinin. These organizations would like to know
where to invest their time and effort in order to create
the highest positive impact in treating malaria.
We next describe the artemisinin supply chain, and

begin our discussion with supply uncertainty in the
cultivation and harvesting process. Artemisia grows
primarily in China, Vietnam, and East Africa due to
the specific climatic conditions required for its culti-
vation. China and Vietnam produce over 80% of the
global supply of Artemisia with the balance produced
in East Africa (Shretta and Yadav 2012). Most Artemi-
sia is grown by small farmers in plot sizes that aver-
age less than 1 hectar. It takes about eight months for
the Artemisia plant to reach full growth. Upon har-
vest, dried Artemisia leaves are collected and sent for
chemical extraction to obtain artemisinin. The per
hectare yield of Artemisia leaves varies considerably
from one farm plot to another, and also from year to
year due to rainfall, climate, and other environmental
factors. In addition, the artemisinin content in the
leaves varies considerably with artemisinin content as
low as 0.1% and as high as 1.2% observed in the past.
Some of this depends on the variety of seeds used and
also the timing of harvesting and bagging leaves rela-
tive to their flowering. Uncertainty in the yield of
Artemisia leaves per hectare of cultivation and then
uncertainty in the kilograms of artemisinin extracted
per kilogram of dried leaves together contribute to a
high level of yield uncertainty for artemisinin; and
collectively, they constitute supply uncertainty in the
artemisinin supply chain.
Using Coartem�, the ACT from Novartis, Spar and

Delacey (2008) and Spar (2008) demonstrate that the
lack of supply creates significant price increases. Kin-
dermans et al. (2007) show that the plantation of Arte-
misia exhibit significant fluctuations from year to
year. As demonstrated in Kindermans et al. (2007),
Schoofs (2008), as well as in our Figure 1, supply fluc-
tuations contribute to price fluctuations for the main
ingredient, artemisinin, for ACT. Low supply of arte-
misinin in 2005 caused the bulk price to go up to
$1100/kg, and excess supply decreased the bulk price
to as low as $170/kg in 2007.
Farmers grow Artemisia if they have reasonable

expectations that they will be able to sell the dried
leaves at a profitable price after the harvest. In making
this decision, they compare the prices obtained for
Artemisia leaves with prices for other cash crops they
can grow such as paddy/rice and corn. Thus, the out-
side option plays a crucial role in the farmers’

decisions regarding whether to grow Artemisia or an
alternative crop. In sum, farmers’ behavior can create
further supply and price fluctuations for the end-
product.
In addition to supply uncertainty, another chal-

lenge in the artemisinin supply chain is demand
uncertainty. The challenges in predicting the demand
for ACT have been highlighted by Kindermans et al.
(2007) and Shretta and Yadav (2012). Shretta and
Yadav (2012) report that Kenya experienced the worst
drought in 60 years and when the rains returned it
resulted in malaria outbreaks and widespread
demand for malaria medicine. In addition to the natu-
ral disasters such as the one in Kenya, Steketee and
Campbell (2010) and SPS (2012) report that one of the
factors contributing to an increased level of uncer-
tainty is the lack of diagnostic testing and lack of
proper record keeping for diagnosis and treatment.
Because the information regarding the needs are not
transmitting back to the upstream in the malaria-
medicine supply chain, both studies claim that the
demand for ACT is extremely difficult to predict, and
therefore, demand uncertainty must be incorporated
into the analysis of the artemisinin supply chain.
Demand for ACTs is also influenced by price fluctu-

ations. Despite the provision of free medicines in gov-
ernment-run clinics, many patients continue to seek
treatment in private sector clinics, drug shops, and
pharmacies due to greater convenience and higher
availability. When the price of the drug is more than a
patient’s willingness to pay, they purchase malaria
medicines that are substandard or inefficacious
(Arrow et al. 2004). The overall demand for ACT is
thus sensitive to the price at which the manufacturers
sell the product. In recognition of this access channel,

Figure 1 Spot Prices of Artemisinin

Source: Prices up to 2012 are as reported at the Artemisinin

Conference in Hanoi in November 2011. Prices for 2012, 2013 and

2014 are 12 month average of monthly median prices as estimated

by William Davidson Institute (WDI) from data on export and

import of artemisinin.
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a pilot project to subsidize the cost of ACT in the pri-
vate sector was implemented in 2009 (Adeyi and
Atun 2010). However, this project was only carried
out for a limited time and in select countries. The
price in the private sector remains to be a key barrier
for patients.
The uncertainties in supply and demand have cre-

ated a cycle of ups and downs in the price of artemisi-
nin and mismatches between the Artemisia cultivated
and its need. A key challenge for matching supply
and demand is the long lead-time (between 14 and
18 months) between the planting of Artemisia and
the completion of the final manufacture of the ACTs
(Shretta and Yadav 2012). In order to reduce the
uncertainty associated with artemisinin prices, larger
manufacturers of ACTs engage in forward contracts
with extractors for a portion of their volume. These
forward contracts specify a price and quantity of arte-
misinin they will purchase at a future point in time.
Smaller manufacturers claim that demand uncertain-
ties, lack of capital, and inability to enforce contracts
limit them from engaging in forward contracts with
artemisinin extractors. Rather, they purchase most of
their artemisinin supplies from the spot market and
continue to operate under price uncertainty. Without
forward contracts, the Artemisia growers and extrac-
tors have to plan their supply based on an uncertain
market demand (in addition to yield uncertainty)
which is almost two years into the future.
While such ups and downs are observed in many

markets with demand and supply uncertainty, the
malaria-medicine market serves a larger social and
public health goal where increases in consumption
create a benefit externality. Because fluctuations in the
artemisinin price and the uncertainty in supply and
demand of artemisinin impact both the price and
availability of ACTs for end patients, organizations
such as the Bill and Melinda Gates Foundation,
UNITAID, Clinton Health Access Initiative (CHAI),
Global Fund to fight AIDS, TB and Malaria, and
the UK Department for International Development
have started focusing on this issue. In particular,
these organizations explore if certain investments/
interventions can improve outcomes in terms of avail-
ability and price.
One intervention that has been attempted focused

on stabilizing prices through voluntary price agree-
ments. In July 2008, the Clinton Foundation entered
into an agreement with several Chinese and Indian
manufacturers that would set price ceilings and help
stabilize ACT prices (Schoofs 2008). Another interven-
tion focused on increasing the usage of forward con-
tracts. In 2009 UNITAID funded an initiative called
Assured Artemisinin Supply Services (A2S2) based
on a tripartite financing model (A2S2 2012). Under
this model, extractors who had existing contracts with

WHO-prequalified ACT manufacturers received
loan-based pre-financing. The idea was that front-
loading the financing would help increase supply and
create “fair prices” on the market and would incen-
tivize those ACT manufacturers who do not currently
engage in forward contracts to start doing so. How-
ever, neither intervention has successfully stabilized
prices (Shretta and Yadav 2012, UNITAID 2011).
These somewhat ad hoc interventions have targeted
the commonly observed symptoms and their immedi-
ate causes without addressing the underlying root
causes of artemisinin price and supply volatility. Con-
cerns about artemisinin prices soaring and supply
being insufficient were again raised in 2011 (RBM/
UNITAID/WHO 2011).
A third intervention, that is ongoing, targeted the

development of a non-plant-based source for artemi-
sinin. With financial support from the Bill & Melinda
Gates Foundation, a research group at the University
of California-Berkeley and Institute for One World
Health has developed a semi-synthetic source of arte-
misinin that may help stabilize the price of artemisi-
nin (Hale et al. 2007). While commercial-scale
manufacturing of semi-synthetic artemisinin from
this project is just beginning (Paddon and Keasling
2014, Reuters 2014), it is unlikely to resolve all the
problems in the short- to medium-term because the
initial capacity will only be a small fraction of the total
artemisinin supply. Some argue that a larger supply
of semi-synthetic artemisinin could disrupt an
already volatile market as agricultural production
may decrease more than the increase in semi-syn-
thetic (Peplow 2013, Van Noordan 2010).
In this study, we develop a model of the supply

chain that captures the effects of such factors as avail-
able farm space, farmer’s self-interest, volatility in
crop yield, volatility in demand, and the introduction
of semi-synthetic artemisinin on such measures as the
level and volatility of medicine price and supply. We
calibrate the parameters and functions of our model,
using data from the field and we investigate the
impact of various interventions. Some of these inter-
ventions are under consideration by the global agen-
cies and others are new areas of focus that are
exposed through our analysis. Our main conclusions
are that initiatives aimed at improving average yield,
creating a support-price for agricultural artemisinin,
and a larger, but carefully managed supply of semi-
synthetic artemisinin have the greatest potential for
improving supply and reducing price volatility of
artemisinin-based malaria medicine.

2. Related Literature

Shretta and Yadav (2012) provide a comprehensive
summary of the challenges in the artemisinin supply
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chain, describing the interactions between price fluc-
tuations in artemisinin, demand uncertainty in ACT
treatments. Dalrymple (2012) provides a historical
account of the development and use of artemisinin-
based malaria medicines and also provides an intro-
duction to the vast array of literature available on
artemisinin. Taylor and Xiao (2014) examine the mer-
its of subsidizing retail purchases vs. retail sales in
malaria medicine distribution channels, and report
that donors should focus on purchase subsidies rather
than sales subsidies.
Both supply and demand uncertainty have found

wide examination in the operations and supply
chain literature. Supply uncertainty, in the form of
yield uncertainty, has received extensive considera-
tion in the context of production planning prob-
lems. Yano and Lee (1995) provide a comprehensive
review of studies that feature yield uncertainty.
Rajaram and Karmarkar (2002), Galbreth and Black-
burn (2006), and Gupta and Cooper (2005) examine
yield uncertainty in the process industries. Tomlin
and Wang (2008) and Noparumpa et al. (2016)
examine co-production and pricing flexibilities
under yield uncertainty.
Yield uncertainty is a widely recognized concern in

agricultural supply chains. Jones et al. (2001) examine
the opportunity to diversify production through the
use of alternate growing seasons for a hybrid seed
corn experiencing yield uncertainty in both growing
regions. Burer et al. (2009) extend this work by incor-
porating supply chain coordination decisions. Black-
burn and Scudder (2009) examine the risk of
producing and distributing fresh produce. Using the
olive oil industry, Kazaz (2004) introduces yield-
dependent cost and revenue structure with one main
supplier who experiences yield uncertainty and a con-
tingency supplier whose price increases with lower
yield. Kazaz and Webster (2011) show the negative
implications of ignoring the impact of supply risk on
leasing, purchasing, and pricing decisions. Li and
Zheng (2006) and Tang and Yin (2007) study joint
pricing and quantity decisions under supply uncer-
tainty. Kazaz and Webster (2015) examine joint pric-
ing and leasing decisions under supply and demand
risk, and show how characteristically supply risk
leads to different results than demand risk in the pres-
ence of a single source. The setting with one reliable
contingency supplier is examined in Tomlin (2009),
and the setting with multiple suppliers in Tomlin and
Wang (2005), Dada et al. (2007), and Federgruen and
Yang (2008). Huh and Lall (2013) study the impact of
rainfall uncertainty on irrigation and crop choice deci-
sions. While this literature extensively focuses on
maximizing firm profits, our study differs from these
publications by investigating the influence of yield
uncertainty in public concerns.

Our study makes two main contributions to the
supply chain literature. First, we examine a novel
problem and develop a unique model that (1) extends
the literature on uncertain yield and uncertain
demand, and (2) deviates from the common perfor-
mance measure of firm-level profit or utility. We ana-
lyze a public-policy problem for which multiple
measures are important (e.g., social welfare, supplier
welfare, manufacturer welfare). We develop and
refine our model through an extensive data gathering
process, including interactions with those who are
actively working in this area at UNITAID, CHAI, and
the Gates Foundation. Our model contains features
that other researchers addressing public-policy ques-
tions may build upon.
Second, our study extends the literature by examin-

ing the impact of interventions to improve supply
chain performance where a key raw material has yield
uncertainty and the end product demand is uncertain.
To the best of our knowledge, interventions in the
artemisinin supply chain have not been explicitly ana-
lyzed before. Such analyses matter not only to the rich
context considered in this study but more generally to
other products such as medicinal plants. Vaccines
and other such products also have uncertain yield
and uncertain demand, and may benefit from a simi-
lar analysis to understand what supply chain inter-
ventions enhance social welfare the most.

3. Model

3.1. Overview
We begin with a high-level description of our artemi-
sinin supply chain model. There are two levels in this
model. Level 2 corresponds to farmers (hereinafter
referred to as suppliers) and level 1 corresponds to
the ACT manufacturers. While farmers and extractors
are separate entities, the relevant decisions are ade-
quately captured by treating artemisinin suppliers as
a single unit.
Suppliers decide whether to produce Artemisia or

the best alternative to Artemisia. The amount of farm
space dedicated to Artemisia is positively influenced
by the expected value of the artemisinin spot price
and, due to supplier risk aversion, is negatively influ-
enced by its variance. The volatility of the spot price
is influenced by the degree of volatility in the harvest
yield and in the size of the market. Price is assured for
units under forward contract. The forward contract
price is aligned with the expected spot price.
Artemisinin not under contract is sold in the open

market, and as such, the spot price reflects the market
clearing price. Accordingly, there is a negative rela-
tionship between the fraction of growing capacity
dedicated to Artemisia and the expected spot price
(e.g., the higher the supply, the lower the spot price).
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Figure 2 illustrates decisions, processes, and relation-
ships in our model of the artemisinin supply chain.

3.2. Equilibrium Condition
Let q denote the amount of farm space dedicated to
producing artemisinin in an upcoming growing sea-
son. The random market-clearing price of artemisinin
after a season’s harvest of Artemisia (and prior to the
next harvest) is P(q) with moments denoted as

�p qð Þ ¼ E P qð Þ½ �

r2P qð Þ ¼ V P qð Þ½ �:
We abstract away the manufacturer’s production

cost and profit margin, so P(q) is also the random
price of ACT. In the next section, we introduce two
models that define how the probability distribution of
P(q) is affected by various parameters.
Let s denote the quantity of semi-synthetic artemi-

sinin introduced to the market. Semi-synthetic arte-
misinin is not subject to yield uncertainty. Describing
the expected yield from each unit of farm space
with l2, the random organic artemisinin yield is exp-
ressed as

Q ¼ ql2Z2; ð1Þ
where Z2 is a positive random variable with cdf Φ2,
mean 1, and variance r22: The term ql2 is the
expected amount of artemisinin from farming q
units of farm space. Combining equation (1) with
the amount of semi-synthetic artemisinin production
s yields the overall random artemisinin supply
ql2Z2 + s. The mean artemisinin supply is ql2 + s.
As noted in section 1, some manufacturers offer

forward contracts that specify a price and quantity of
artemisinin they will purchase at a future point in
time. And some extractors establish forward price
contracts with farmers prior to the growing season in
order to obtain sufficient supply. These forward con-
tracts specify the price for the farmer’s harvested
crop. Let a denote the fraction of farm space dedicated
to producing artemisinin that is under forward

contract. The forward contract price is set to match
the expected spot price �p qð Þ:
Let c denote the amount of farm space owned by all

suppliers who could produce artemisinin. The own-
ers of c units of farm space have alternatives to pro-
ducing artemisinin. Let Ub denote the utility of the
best alternative associated with a randomly selected
unit of farm space. The cdf of Ub is qb(u) and its mean
is lb.
We model the utility per unit of space dedicated to

producing artemisinin of a representative supplier1 as
the product of two terms: (1) expected yield per unit
of farm space, and (2) the utility per unit of artemisi-
nin, which is governed by a mean-variance utility
function, i.e., ua ¼ l2 � �p qð Þ � cr2P qð Þ� �

:
The parameter c ≥ 0 is a measure of risk aversion,

that is, the higher the value of c, the higher the risk
aversion; if c = 0, then suppliers are risk neutral. We
see that utility is increasing in average yield (l2) and
average price (�p qð Þ), and is decreasing in price vari-
ance (r2P qð Þ) with the rate of decrease controlled by
the risk-aversion parameter (c). Note that the utility
of producing artemisinin associated with a unit of
space under contract is l2�p qð Þ (i.e., by the terms of
the forward contract, there is no variance in the
price).
Let Ub0 denote the random utility of the best alter-

native associated with a unit of farm space under for-
ward contract. We define Ub0 as Ub conditioned on
the utility of the best alternative being less than the
utility of artemisinin under contract, that is, the utili-
ties associated with units of space under contract are
representative of the population (conditioned on a
preference for artemisinin over the best alternative).
Accordingly, the cdf of Ub0 ¼ UbjUb � l2�p qð Þ is

qb0 uð Þ ¼ P Ub0 � u½ � ¼ P Ub � ujUb � l2�p qð Þ½ �
¼ qb uð Þ

qb l2�p qð Þð Þ
for all u� l2�p qð Þ:

ð2Þ

We are now ready to identify a condition for the
value of q in equilibrium. For a given q, the amount of

Figure 2 Schematic of Our Model of the Artemisinin Supply Chain

Kazaz, Webster, and Yadav: Malaria Medicine Supply Chain
1580 Production and Operations Management 25(9), pp. 1576–1600, © 2016 Production and Operations Management Society



farm space not under contract that is dedicated to pro-
ducing artemisinin is

q� aq: ð3Þ
And, for a given q, the amount of farm space not
under contract with utility of the best alternative no
more than the utility of producing artemisinin is

cqb uað Þ � aqqb0 uað Þ ¼ qb l2 �p qð Þ � cr2P qð Þ� �� �
c� aq

qb l2�p qð Þð Þ
� � ð4Þ

(see equation (2)), that is, the total farm space with
Ub ≤ ua is reduced by the amount of farm space
with Ub ≤ ua that is under contract. Equilibrium can
be found by setting equation (3) equal to equa-
tion (4) and solving for q.

F q�ð Þ � 1� a
c
q� � a

qb l2�p q�ð Þð Þ
� qb l2 �p q�ð Þ � cr2P q�ð Þ� �� � ¼ 0:2

ð5Þ
We note that the equilibrium condition given in

equation (5) has a simple interpretation when suppli-
ers are risk neutral, that is, if c = 0, then equation (5)
reduces to

q� ¼ cqb l2�p q�ð Þð Þ: ð6Þ
The above expression says that the farm space dedi-

cated to producing artemisinin is the fraction of
capacity with utility of the best alternative no more
than the expected revenue per unit of farm space.
Figure 3 illustrates the curves associated with equa-

tions (3) and (4), and the associated equilibrium
point. Note that equation (3) is increasing in q. For
any realization of supply and demand random

variables, it follows from the market-clearing prop-
erty that the spot price is decreasing in q, which
implies that the expected spot price is decreasing in q,
that is,

�p0 qð Þ\0: ð7Þ
If utility ua does not increase as q increases, that is,

d

dq
l2 �p qð Þ � cr2P qð Þ� �� �� 0; ð8Þ

then equation (4) is decreasing in q (i.e., the right-
hand side of equation (4) is the product of two posi-
tive terms that are both decreasing in q), and thus
equation (8) is a sufficient condition for a unique
equilibrium.
We emphasize that our model is static in the sense

that it predicts the farm space dedicated to producing
artemisinin as the system settles into equilibrium. We
do not capture the dynamics of behavior in interim.
Our model assumes that a supplier’s decision to enter
the market is based on the mean and variance of mar-
ket price that suppliers are not biased in their esti-
mates of these measures, and that suppliers, in
equilibrium, do not move in and out of the market in
response to random market fluctuations. As a step
towards an understanding of possible interventions
in the complex real-world system, our goal is to strike
a balance of modeling the system with enough rich-
ness to capture the essence of how elements interact
to affect performance while avoiding excess complex-
ity that may lead to brittleness in behavior (e.g., small
changes in model settings generate large changes in
results). In section 5, we consider how the inclusion
of dynamics and decision-making biases may affect
our conclusions.

Figure 3 Illustration of Equations (3) and (4), and the Corresponding Equilibrium Quantity
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3.3. Two Models of Price-Dependent Demand
The random ACT market size (e.g., number of malaria
cases) is

M ¼ l1Z1;

where l1 is the expected ACT market size and Z1 is
a positive random variable with cdf Φ1, mean 1, and
variance r21. We assume that Z1 is independent of
the yield random variable Z2. This assumption is a
reasonable approximation of reality in our setting
where more than 90% of P. falciparum malaria trea-
ted by ACTs occurs in sub-Saharan Africa and more
than 80% of Artemisia growing regions are located
in Asia, for example, a drought in southeast Asia is
largely independent of rainfall patterns (and hence
malaria) in sub-Saharan Africa. In addition, weather
patterns that affect the yield at harvest time occur
much earlier than when the drug from the harvest
becomes available to serve market needs (influenced
by much more recent weather patterns).
We consider two price-dependent demand models

in our analyses:

M1: dðpÞ ¼ Mq1ðpÞ

M2: dðpÞ ¼ bp�1:

For example, q1(p) is the fraction of the market will-
ing to pay price p or more. The models reflect two
opposing interpretations of the role of market size on
demand:

M1. The fraction of the market willing to pur-
chase at price p, q1(p), is independent of the
market size M.

M2. The total volume purchased at price p is
independent of the market size M.

Model M1 is motivated by a setting where the mar-
ket is composed of many individual buyers who pur-
chase ACT if willing/able to pay the market price.
Model M2 is motivated by a setting where the market
is composed of a few buyers (e.g., NGOs and interna-
tional agencies) who spend a fixed total budget, b, on
whatever supply is available. The result is an isoelas-
tic demand function. M1 is likely a better fit in regions
where most patients seek treatment in the private sec-
tor. M2 is likely a better fit in regions where most
patients seek treatment in the government or NGO-
run health clinics; governments or NGOs have a fixed
budget for purchasing malaria medicines for a given
year. We examine measures of performance under
each of these models individually. These models
allow for more detailed characterizations of behavior
than what could be obtained from a more complex
demand model, and such characterizations are likely

to span the behavior of a system with demand that is
a composite of M1 and M2.
We now turn our attention to the form of the ran-

dom spot price function P(q) under these two demand
models, beginning with M1. We consider the impact
of a price-support intervention. For this intervention,
one or more organizations such as NGOs agree to pay
a minimum price of p0, effectively assuring that the
market-clearing price will not drop below the sup-
port-price p0. We assume that the willingness-to-pay
function q1(p) 2 [0, 1] is strictly decreasing in price
over the range of possible price realizations. Thus, we
can invert q1(p) to obtain expressions for the random
market-clearing price and its moments (i.e., set supply
ql2Z2 + s equal to demand l1Z1q1, solve for q1, then
invert q1(p) while accounting for the restrictions of
q1 2 [0, 1] and p ≥ p0),

M1: PðqÞ ¼ max q1
�1 min

ql2Z2 þ s

l1Z1
; 1

� �� �
; p0

� �
; ð9Þ

�p qð Þ ¼ E max q1
�1 min

ql2Z2 þ s

l1Z1
; 1

� �� �
; p0

� �� 	
;

ð10Þ

r2P qð Þ ¼ V max q1
�1 min

ql2Z2 þ s

l1Z1
; 1

� �� �
; p0

� �� 	
:

For M2, we follow a similar approach,

M2: PðqÞ ¼ max
b

ql2Z2 þ s
; p0

� �

�p qð Þ ¼ E max
b

ql2Z2 þ s
; p0

� �� 	
; ð11Þ

r2P qð Þ ¼ V max
b

ql2Z2 þ s
; p0

� �� 	
:

3.4. Performance Measures
In this section, we introduce measures of performance
relevant to the manufacturer, society, and supplier.
The expected artemisinin volume in equilibrium is

p1 ¼ E q�l2Z2½ � þ s ¼ q�l2 þ s;

which is a measure of the manufacturer’s welfare.
As an indicator of the availability of the drug for
treatment, p1 is also a measure of public health. An
alternative measure of public health is the expected
fraction of total need that is satisfied, or fill rate,

b ¼ E min
q�l2Z2 þ s

l1Z1
; 1

� �� 	
:
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Recall that Ub0 ¼ UbjUb � l2�p qð Þ and that the cdf of
Ub0 is qb0 uð Þ ¼ qb uð Þ=qb l2�p qð Þð Þ: Accordingly, the sup-
plier surplus associated with aq* units under contract
at price �p q�ð Þ is

aq�
Zl2�p q�ð Þ

�1
l2�p q�ð Þ � tð Þ qb

0 tð Þ
qb l2�p q�ð Þð Þ dt

¼ aq�
Zl2�p q�ð Þ

�1

qb tð Þ
qb l2�p q�ð Þð Þ dt:

The cdf of the utility of the best alternative after
units under contract are removed from the population
is as follows:

qbn0 uð Þ ¼
cqb uð Þ� aq�qb uð Þ

qb l2�p q�ð Þð Þ
c�aq� ; u� l2�p q�ð Þ

qb uð Þ; u� l2�p q�ð Þ

8<
: ð12Þ

(obtained by dividing equation (4) by the number
of units remaining in the population after remov-
ing units under contract). Thus, the supplier
surplus associated with units not under contract is
as follows:

c� aq�ð Þ
Zl2 �p q�ð Þ�cr2 q�ð Þð Þ

�1
qbn0 tð Þdt

¼ c� aq�

qb l2�p q�ð Þð Þ
� � Zl2 �p q�ð Þ�cr2 q�ð Þð Þ

�1
qb tð Þdt

¼ q� 1� að Þ
Zl2 �p q�ð Þ�cr2 q�ð Þð Þ

�1

qb tð Þ
qb l2 �p q�ð Þ� cr2p q�ð Þ


 �
 �dt

(the first equality follows from equation (12); the
second equality follows from equation (5)). Sum-
ming the above expressions, the total supplier sur-
plus is

p2¼q�
"
a
Zl2�p q�ð Þ

�1

qb tð Þ
qb l2�p q�ð Þð Þdtþ 1�að Þ

Zl2 �p q�ð Þ�cr2 q�ð Þð Þ

�1

qb tð Þ
qb l2 �p q�ð Þ�cr2p q�ð Þ


 �
 �dt
#

¼q�
a

qb l2�p q�ð Þð ÞE l2�p q�ð Þ�Ubð Þþ� 
þ 1�a

qb l2 �p q�ð Þ�cr2p q�ð Þð Þð ÞE l2 �p q�ð Þ�cr2 q�ð Þ� ��Ub

� �þh i
2
4

3
5:

If Ub is uniform on [uL, uH], for example, then

p2¼ q�

2 uH�uLð Þ

a
l2�p q�ð Þ�uLð Þ2
qb l2�p q�ð Þð Þ þ 1�að Þ

l2 �p q�ð Þ�cr2p q�ð Þ

 �

�uL

 �2
qb l2 �p q�ð Þ�cr2p q�ð Þ


 �
 �
2
64

3
75:

4. Analysis

This section presents analysis of the preceding model.
The analysis proceeds along the following sequence.
We first investigate the impact of changes in parame-
ter values on measures of performance analytically
(directional impact). We then conduct numerical anal-
ysis using a calibrated model. We offer interpretations
of our results and discuss limitations. Section 5 sum-
marizes the main implications of our results for policy
makers.
In order to help reinforce the connection between

our model, its purpose, and the real-world supply
chain, we provide a few examples of interventions
with changes in relevant parameters in Table 1.

4.1. Directional Effects of Increasing Parameter
Values on q* and p1
Table 2 contains comparative-static results for q* and
p1 given that suppliers are risk neutral (see section A3
in Appendix A for derivations and proofs). The

Table 1 Examples of Interventions to Induce Different Types of
Change

Example intervention Change

Increase availability of high-yield seed
varieties

Increased yield per unit of
farm space (l2↑)

Increase supply of competing crops in
regions not conducive to growing
Artemisia

Reduced attractiveness of
alternative crops (lb↓)

Increase malaria prevention efforts Reduced market size (l1↓)
Assure that price will not drop below
a threshold

Introduce a price support
(p0↑)

Training/education/resources in regions
that are underutilized yet conducive to
growing Artemisia

Increased available farm
space (c↑)

Increase investment in semi-synthetic
production

Increased semi-synthetic
supply (s↑)

Increase spending on ACT Increased purchase budgets
(b↑)

Provide low-cost loans to farmers in the
event of low yield

Reduced supplier risk
aversion (c↓)

Increase availability of disease-resistant
seed varieties

Reduced yield variability
(r2↓)

Improve and increase documentation in
diagnostic testing and treatment

Reduced market uncertainty
(r1↓)

Provide low-cost loans for up-front
partial payment in forward contracts

Increased usage of forward
contracts (a↑)
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complexity of the model inhibits similar results for
the measures b and p2, and for the case of risk-averse
suppliers.
The results in Table 2 generally align with intu-

ition: (1) the increased use of forward contracts (a)
has no impact (given suppliers are risk neutral),
(2) the spend budget (b) does not play a role under
M1, but increases in the budget lead to increases in
supply under M2, (3) an increase in farm space with
potential to produce artemisinin (c) leads to
increases in supply, (4) an increase in market size
(l1) leads to increases in supply under M1, (5) an
increase in either market size (l1) or market volatil-
ity (r1) has no effect on supply under M2, (6) an
increase in the attractiveness of the best alternative
to artemisinin (lb) leads to decreases in supply, and
(7) an increase in the support-price (p0) leads to an
increase in supply.
Increases in the remaining parameters exhibit less

intuitive effects. Let us begin with the impact of an
increase in the coefficient of variation of organic yield
(r2). Suppliers are risk-neutral and thus are not con-
cerned about price volatility, so we may expect that
changes in yield volatility will have no effect on sup-
ply. We see this result under M1 when demand is lin-
ear. However, changes in yield uncertainty affect

supply when the demand function is nonlinear. The
reason is that the equilibrium condition includes an
expected value of a function of random variables
(e.g., see equation (10) and equation (11)). If the func-
tion is nonlinear, as is the case of M1 with a nonlinear
demand function and M2, then upside deviations
from the mean are either amplified or compressed rel-
ative to downside deviations. This distortion from
nonlinearity is what drives the directional arrows in
Table 2. A convex demand function, for example,
means that the increase in price from a unit decrease
in supply is greater than the decrease in price from a
unit increase in supply. Consequently, an increase in
yield uncertainty exerts an upward pressure on the
expected price, which in turn leads to a higher equi-
librium quantity. The behavior is reversed if the
demand function is such that a unit increase in supply
causes a larger change in price than a unit decrease in
supply (i.e., if the demand function is concave).
The changes in supply in response to increases in

the coefficient of variation of market size (r1) under
M1 are similar, but not identical, to what we see for
r2. There is similarity because the directional arrows
are caused by nonlinearities. However, note that a
linear demand function means that the fraction of
the market willing to pay price p is proportional to
supply but is inversely proportional to market size
(see equation (9)), that is, if price is linear in supply,
then it is nonlinear in market size. In particular, the
decrease in price from a unit decrease in market size
(or need for the drug) is greater than the increase in
price from a unit increase in market size. This puts
downward pressure on the expected price as market
uncertainty increases, and leads to a lower equilib-
rium quantity. In the next section, we will see that
this structural difference between the roles of ran-
dom yield and market size contributes to meaningful
differences in sensitivities to changes in these
parameters.
While an increase in semi-synthetic artemisinin (s)

generally leads to an increase in supply, it is possible
that supply could decrease if demand is sufficiently
convex in price. The convexity of the demand curve
can lead to a steep drop in price in response to an
increase in semi-synthetic supply resulting in a large
exit of suppliers from the market and lower total sup-
ply (see Figure 8 for an example). The main driver of
the result is nonlinearity as discussed above, and is
particularly related to the comparative-static results
for r2. There is no uncertainty in semi-synthetic yield,
and thus as the production of semi-synthetic
increases, the coefficient of variation of total yield—
the sum of organic and semi-synthetic—decreases. If
the demand function is convex, then a reduction in
the coefficient of variation of total yield puts a down-
ward pressure on supply (as shown in Table 2 for r2)

Table 2 Directional Effects of Increases in Different Parameter Values
When Suppliers are Risk Neutral

Increase
in

Demand
model Change in q* Change in p1

a M1 – –
M2 – –

b M1 – –
M2 ↑ ↑

c M1 ↑ ↑
M2 ↑ ↑

l1 M1 ↑ ↑
M2 – –

r1 M1 Linear d(p), ↓
Max{Z1} ≤ 2:
concave d(p), ↓
Convex d(p), ↑↓

Linear d(p), ↓
Max{Z1} ≤ 2:
concave d(p), ↓
Convex d(p), ↑↓

M2 – –
s M1 ↓ Linear or concave d(p), ↑

Convex d(p), ↑↓
M2 ↓ ↑↓

l2 M1 ↑↓ ↑
M2 ↑ ↑

r2 M1 Concave d(p), ↓
Linear d(p), –
Convex d(p), ↑

Concave d(p), ↓
Linear d(p), –
Convex d(p), ↑

M2 ↑ ↑
lb M1 ↓ ↓

M2 ↓ ↓
p0 M1 ↑ ↑

M2 ↑ ↑

↑ = increasing, ↓ = decreasing, – = no change, ↑↓ = direction depends
on other parameter Values.
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that can more than offset the increase in semi-
synthetic artemisinin.
Lastly, while it is not surprising that supply is

increasing in average yield (l2), it is noteworthy that
the amount of farm space dedicated to producing
artemisinin (q*) can increase as well. This behavior is
assured under M2, and depending on the demand
function, can occur under M1. This is noteworthy
because the system is governed by a negative feed-
back loop (stemming from the inverse relationship
between supply and price) that, in general, works to
mute the impact of interventions. If q* is held fixed
and l2 increases, then organic supply will increase
proportionally. The effect of an increase in l2 on sup-
ply is amplified when it also leads to an increase in q*.
The result hints that l2 is a potentially powerful lever,
and we present an illustration of its power in the next
section.

4.2. Numerical Analysis of Effects of Changes in
Parameter Values
The comparative statics in the previous section are
limited to the case of risk-neutral suppliers. In this
section, we use numerical methods to investigate the
sensitivity of system performance to changes in
parameters. Using the limited available historical data
as a guide, we develop a set of parameter values and
functions for our base-case model (see Table 3).
Parameters r1, r2, s, a, l1, l2, and b are estimated
using historical data related to these values.3 We esti-
mate the risk aversion parameter as c = 0.008.4 We
assume uniformly distributed willingness-to-pay and
utility of the best alternative on the basis of the princi-
ple of insufficient reason proposed by Pierre Laplace
in the 1700s (Luce and Raiffa 1957); if all that is known
about a random variable is that it can take on values
over a finite range, then any distribution other than
uniform implies that something else is known. We
use the symmetric triangular distribution for Z1 and
Z2 in order to capture a central tendency (that is not
present in the uniform distribution) about the mean
of 1. Finally, we use historical data on price, annual
supply, need, and fill rates as a guide, finding values
of lb, rb, c, and coefficients of linear function q1(p) that
lead to equilibrium results that are generally consis-
tent with observed results.
We use stochastic optimization with 10,000 trials

per simulation via Analytic Solver Platform from
Frontline Systems to identify the equilibrium quan-
tity. Table 4 lists statistics from the base-case model.
We compute the sensitivity of performance to

changes in each of the 11 parameters listed in Table 2.
With the exception of support-price p0, each parame-
ter is varied between �50% and +50% of its base-case
value (p0 = 0 in the base-case). We find that the rela-
tive sensitivity of performance to changes in different

parameter values is reflected in the grouping of
parameters in Table 1. Performance is more sensitive
to changes in parameters listed near the top of Table 1
and is less sensitive to changes in parameters listed
near the bottom of the table. We categorize the
parameters into three groups—high, moderate, and
low sensitivity:

High-sensitivity: average yield (l2), average util-
ity of the best alternative (lb),
average market size (l1)

Moderate-sensitivity: available farm space (c),
semi-synthetic supply (s),
spend budget (b)

Low-sensitivity: risk aversion (c), yield variability
(r2), demand variability (r1), for-
ward contract % (a)

While the boundaries of these categories are subjec-
tive (due to multiple performance measures and non-
linearities), the parameters in each category exhibit
some commonality that may help explain observed
differences in sensitivity. In particular, the high cate-
gory can be viewed as first-moment parameters, the
low category can be viewed as second-moment

Table 3 Units, Functions, Random Variables, and Parameters in our
Base-Case Model

Units
Space unit = 1000
hectares (H)

Artemisinin
unit = 1000 kgs (K)

Currency
unit = $1000 (D)

Functions and random variables
q1(p) = 2 – 0.0032p Z1, Z2 ~ symmetric

triangular
r1 = 0.1 K,
r2 = 0.3 K/H

Ub ~ uniform
lb = 4800 D,
rb = 1500 D

Parameters
Potential farm
space (c) = 80 H

Semi-synthetic
supply (s) = 60 K

Forward contract %
(a) = 25%

Risk aversion
(c) = 0.008

Mean demand
(l1) = 240 K

Mean yield
(l2) = 10 K/H

Purchase budget
(b) = 75,000 D

Table 4 Statistics from the Base-Case Model in Equilibrium

Demand model

M1 M2

Hectares producing artemisinin in 000s (q*) 17 15
Average total supply in metric tons (p1) 235 212
Average semi-synthetic production as fraction
of total (%)

26 28

Average fill rate (b) (%) 89 85
Average supplier surplus in $000,000s (p2) $10 $8
Average total spend in $000,000s $73 $75
Average artemisinin price in $ per kg (�p) $345 $373
Standard deviation in artemisinin price (rP) 46 90
Min and max price per kg (in 10,000 trials) $313, $505 $232, $740
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parameters, and the moderate category can be viewed
as quantity parameters. In other words, in the high cat-
egory, we have parameters that specify the averages
of random variables whereas in the low category we
have parameters that are closely linked to volatility.
Parameters r1 and r2 are direct measures of volatility,
whereas parameters c and a control the importance of
volatility in supplier decision making. Parameter c
measures the degree to which suppliers care about
volatility in the market and parameter a controls the
fraction of suppliers that are immune to market
volatility (via a forward contract). The moderate cate-
gory contains the remaining parameters that are not
closely linked to moments of the random variables.
We do not categorize the support-price parameter (p0)
because its base-case value is 0 (i.e., no price support
currently in effect).
In what follows, we present and discuss results for

one parameter within each category; figures illustrat-
ing the sensitivity of performance measures to
changes in other parameters are available in an
Appendix S1.
Figures 4–6 show the sensitivity of total supply

(p1), fill rate (b), and supplier surplus (p2) to changes
in one parameter from each category—forward con-
tract percentage (low), semi-synthetic supply (moder-
ate), and average yield (high). For all of the sensitivity
figures, we divide p1 and p2 by constants (635 and
85,500, respectively) so that all measures take on val-
ues between 0 and 1.
Recall that a tripartite financing model was intro-

duced in 2009, in part to encourage increased use of
forward contracts and thereby increase supply. Our
results in Figure 4 indicate that increased use of for-
ward contracts have minimal impact on supply and

other measures. To assess the robustness of this obser-
vation, we increased the risk aversion parameter by
an order of magnitude (from c = 0.008 to c = 0.08),
and we find little difference in sensitivity. Greater
sensitivity can arise in an alternative calibration with
higher variation in utility (rb) and risk aversion (c),
but these higher values are not reasonable in the cur-
rent market for artemisinin.
Figure 7 augments Figure 3 to illustrate how the

base-case equilibrium shifts in response to the
extreme of no forward contracts (a = 0). Both Fig-
ures 3 and 7 are created using the base-case model
under M1 (the behavior is similar under M2). We see
that a reduction from a = 0.25 to a = 0 creates an
upward shift in equation (3) that puts pressure to
decrease equilibrium, and creates an upward shift in
equation (4) that puts pressure to increase equilib-
rium. The result of these offsetting pressures is a very
narrow band of equilibrium quantities for
a 2 [0, 0.25]. In contrast, equation (3) is unaffected by
changes in s or l2, and we find similar or larger shifts
in equation (4) as s or l2 change, leading to larger
changes in equilibrium. As discussed in section 4.1,
increases in average yield (l2) positively affect the
supplier’s utility per unit of farm space as well as sup-
ply. However, increases in semi-synthetic supply (s)
positively affect supply only. This difference helps
explain the differences in observed sensitivities to
changes in s and l2.
Recall from Table 2 that it is possible for total sup-

ply to be decreasing in semi-synthetic production
when demand is convex in price, as is the case with
demand model M2. Figure 5 shows that supply is
increasing in semi-synthetic production. However,
while we suspect this to be the dominant behavior in

Figure 4 Sensitivity of Total Supply, Fill Rate, and Supplier Surplus to Changes in the Forward Contract Percentage (a)
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real-world settings, it does not take much of a change
in the base-case model to yield a decreasing supply
function. Figure 8 is based on two changes to the
base-case model: suppliers are risk neutral and yield
uncertainty is increased by one-third (i.e., c is
decreased from 0.008 to 0 and r2 is increased from 0.3
to 0.4).

4.3. Effects of Changes in Parameter Values on
Price Volatility
Price volatility influences a supplier’s decision on
whether or not to produce artemisinin, and in this
sense, the effects of price volatility are captured in the
summary performance measures reported above.

That said, the impact of interventions on price volatil-
ity is a measure of interest in its own right among pol-
icy makers. As one may expect, the sensitivity of price
volatility to changes in parameters is consistent with
the sensitivity of other performance measures, that is,
parameters that exhibit low (high) sensitivity with
respect to supply, fill rate, and supplier surplus tend
to exhibit low (high) sensitivity with respect to price
volatility.
We present selected price volatility sensitivity

results below. In order to highlight how relative
price volatility changes as parameters change, we
report the price coefficient of variation (CV = SD/
mean).

Figure 5 Sensitivity of Total Supply, Fill Rate, and Supplier Surplus to Changes in Semi-Synthetic Production (s). The figure also includes
semi-synthetic production as a fraction of the total (s/(s + q*))

Figure 6 Sensitivity of Total Supply, Fill Rate, and Supplier Surplus to Changes in Expected Yield Per Hectare (l2)

Kazaz, Webster, and Yadav: Malaria Medicine Supply Chain
Production and Operations Management 25(9), pp. 1576–1600, © 2016 Production and Operations Management Society 1587



Figure 9 illustrates that changes in demand uncer-
tainty have little effect on price volatility, whereas
reductions in yield uncertainty translate into notice-
able reductions in price volatility. The reason for
the difference, in part, is due to the greater degree
of yield uncertainty than demand uncertainty in the
base-case model (e.g., r2 = 3r1 = 0.3, so a 50%
increase in r1 is comparable to a 17% increase in
r2), though a difference in sensitivity remains when
r2 = r1 = 0.1. As discussed in section 4.1, there is a
structural difference in the price function equa-
tion (9) that explains this result—the fraction of the
market willing to pay price p is proportional to sup-
ply but is inversely proportional to market size.

This nonlinearity acts to soften the effects of chang-
ing volatility in market size on the volatility of
price.
While we find the supply, fill rate, and surplus

measures to be relatively insensitive to changes in r1
and r2, there is an important lesson for policy makers
if interventions to impact r1 and r2 are being consid-
ered. Our analysis points to greater impact from
changes in r2 than r1 for two reasons. The first reason
is the structural difference explained above. A second
reason is that changes in r1 have no effect of on per-
formance under M2; the sensitivity of performance to
changes in r1 is further diminished by the extent that
reality reflects M2 over M1.

Figure 8 Sensitivity of Total Supply to Changes in Semi-Synthetic Production (s) with Risk Neutral Suppliers (c = 0) and Higher Yield Uncertainty
(r2 = 0.4) Under Demand Model M2

Figure 7 Illustration of Equations (3) and (4), and the Corresponding Equilibrium Quantities for a = 0 and a = 0.25
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Figures 10 and 11 illustrate the sensitivity of price
volatility to changes in semi-synthetic production and
to the support-price. These figures also report the
average price in order to expose the relationship
between average price and its relative volatility. We
rescale the average price by dividing by $2000. (Aver-
age price is virtually unchanged as r1 and r2 are var-
ied, so the average price curves are excluded from
Figure 9.)
One advantage of increasing semi-synthetic pro-

duction with its deterministic yield is that it trans-
lates into lower supply uncertainty, and as a
consequence, lower price volatility. We see this

effect in Figure 10. A 50% increase in semi-synthetic
production reduces price volatility by 20% for both
M1 and M2. The figure also illustrates the down-
ward pressure on price from semi-synthetic produc-
tion. A 50% increase in semi-synthetic production
reduces average price by about 5%, slightly less for
M1 and slightly more for M2.
Similar to an increase in semi-synthetic production,

the introduction of a support-price has a direct effect
on price volatility (i.e., by restricting the downward
range of price). Figure 11 illustrates this effect. The
support-price does not affect the system until it
reaches about $300 (i.e., the price rarely drops below

Figure 10 Sensitivity of Average Price (Divided by $2000) and Price Coefficient of Variation to Changes in Semi-Synthetic Production (s)

Figure 9 Sensitivity of Price Coefficient of Variation to Changes in Demand Uncertainty (r1) and Yield Uncertainty (r2). The sensitivity to yield
uncertainty is illustrated at the base-case value r2 = 0.3, and at r2 = 0.1 = r1. Sensitivity results are not reported for demand model M2
because demand uncertainty does not affect the system
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$300), and price volatility nearly disappears once the
support-price reaches $440.

4.4. Limitations
There are limitations in our model that should be
taken into account when interpreting our results. Our
model is static, ignoring dynamics that arise from an
intervention that causes the system to move towards
a new equilibrium. Thus, interventions that are found
to be especially impactful in our model may have a
negative side effect of inducing a greater degree of
dynamic instability in the system, both in terms of the
magnitude of supply–demand imbalance in response
to the intervention and the time to settle into a new
equilibrium. We come back to this point in the next
section.
As a related point, our model considers a single-

period problem where excess inventory from one year
is not used/sold in the following years. The over
three-year shelf life of artemisinin allows holding
inventory from one year and using it in the following
years. While suppliers do not necessarily have the
capital to invest in holding inventory, ACT manufac-
turers do hold inventory. We have conducted numeri-
cal tests of a model that includes random leftover
inventory from the prior period, and we find no dif-
ferences in our sensitivity conclusions. This is not
unexpected in light of our numerical results in sec-
tion 4.2 where we find that the system is insensitive
to changes in volatility measures. This muted behav-
ior is influenced by the static nature of our model, that
is, that suppliers do not move in and out of the market
in response to random market fluctuations and
instead decide what to produce based on the mean
and variance of market price. The system will be more

erratic than our model predicts if there are many sup-
pliers who move in and out of the market based on
current conditions. There is a dearth of information
on the extent to which suppliers move in and out of
the market, and thus represents a potential area for
future investigation.
Our model assumes full and symmetric information

between suppliers, manufacturers, and purchasers/
financiers. Suppliers do not under- or over-react to
market signals. In practice, suppliers may have poor
knowledge of market demand compared to the finan-
ciers and purchasers (Levine et al. 2008). Forecasting
helps in resolving this information asymmetry more
than reducing the intrinsic demand uncertainty.
Finally, the attractiveness of an intervention is based

on both its impact and cost, including ease and speed
of implementation. There are likely many possible
approaches for influencing the value of each parameter
in our model, each with its own cost and implementa-
tion challenges. The identification and cost assessment
of alternative approaches to affect different types of
desired change is left to those with specialized exper-
tise, and is outside the scope of this study.

5. Summary of Implications for Policy
Makers

Although a number of results developed in the pre-
vious section are valuable in developing a better
understanding of the market, we discuss the impact
of the interventions that have either been imple-
mented in this market in the past or are being
actively considered by policy makers. We explain in
greater detail the most significant and the most sur-
prising results.

Figure 11 Sensitivity of Average Price (Divided by $2000) and Price Coefficient of Variation to Changes in the Support-Price (p0)
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5.1. Increasing Forward Contracting has Marginal
Impact
As noted above, the A2S2 initiative was created in 2009
to increase artemisinin supply to meet the projected
ACT demand. A2S2 was based on a tripartite financing
model where extractors who had existing contracts
with WHO-prequalified ACT manufacturers received
financing at subsidized rates. The underlying premise
was that offering lower interest capital would incen-
tivize more forward contracts with farmers and
increase artemisinin supply. An independent review
estimated the impact to be 35% below expectations,
though the team was not able to identify specific rea-
sons for the shortfall (UNITAID 2011). The program
has since been terminated. While our results are consis-
tent with that outcome, we caution that our analysis
may understate the impact of forward contracts. In
particular, the beneficial impact of increased forward
contracts, as well as improvements in other second-
moment parameters and a support price, are likely to
be greater than predicted by our model if there are
many suppliers who move in and out of the market
based on current conditions.

5.2. Reducing Demand Uncertainty has Marginal
Impact
The model shows that attempts to decrease market
uncertainty through better disease forecasting also
have limited impact. Understandably, when the
overall budget for purchasing malaria medicines is
fixed and known to all actors in the system, reduc-
tions in demand uncertainty do not impact the mar-
ket outcomes. More interestingly, even when the
overall budget is not fixed and the total quantity
purchased depends upon the price offered, reduc-
tions in demand uncertainty through better epidemi-
ological forecasting result in only small increases in
overall supply. This result, which is similar to impact
of forward contracts noted above, is a reflection of
the more general phenomenon observed in numeri-
cal results of our calibrated model: equilibrium is rel-
atively insensitive to changes in measures that relate
to volatility.

5.3. Increasing the Production of Semi-Synthetic
Artemisinin has a Moderate Impact, and the
Transition Period Requires Careful Management
of the Two Sources of Supply
A greater production of semi-synthetic artemisinin
increases overall supply, increases fill rate, and
decreases price volatility. This is notable because of
the debate surrounding the value of this intervention
(Peplow 2013, Van Noordan 2010). On the surface,
one might view increasing semi-synthetic as a very
significant and positive tool to improve overall

supply and decrease price volatility. However, we see
that a 50% increase in semi-synthetic production
translates into approximately an 8% increase in sup-
ply and a 5% increase in fill rate (for both demand
models). In addition, supplier surplus drops by about
15%. We also observe some risk that overall artemisi-
nin supply could decrease (see Figure 8). This results
from the semi-synthetic supply not being able to off-
set the decrease in agricultural artemisinin produc-
tion as suppliers exit the market. However, beyond a
certain threshold volume of semi-synthetic produc-
tion, overall output increases as semi-synthetic
increases. This highlights that, while semi-synthetic
may increase overall supply unconditionally as its
capacity nears the total demand, in the interim, it is
important to manage the two sources of supply care-
fully in order to avoid decreases in overall supply. In
addition, increasing semi-synthetic production has its
own challenges. For example, the use of semi-syn-
thetic in an ACT production process requires that the
producer go through an FDA-type approval process
that takes time and money. In addition, there is resis-
tance to purchasing semi-synthetic by some ACT
manufacturers because the semi-synthetic producer is
also a competitor in the ACT market.

5.4. Increasing Agricultural Yield has Significant
Impact
The overall supply of artemisinin increases with
increases in average yield due to two positive effects –
the output per hectare planted increases but addition-
ally the farmer’s utility for producing artemisinin
increases. Other interventions are one-dimensional in
the sense of exerting a single force on the system. The
supply chain has a negative feedback loop that damp-
ens the sensitivity of performance to interventions.
For example, the positive effect of increased output
per hectare is mitigated by the negative relationship
between supply and price, i.e., supply up ? price
down ? reduced supplier interest ? supply down.
However, the increased productivity increases both
output and farmer utility that, compared to other
interventions, diminishes the strength of the negative
feedback loop in the system. Figure 6 shows that the
impact of yield improvements is less under M2 than
M1. This is because the fixed total spend under M2
leads to larger reductions in price with improved
efficiency.
Changes in planting methods, and other agricul-

tural practices can lead to some improvements in
yield. Radical improvements can only come from the
use of higher-yielding varieties of Artemisia. Such
high-yielding seed varieties may also lead to slight
reductions in yield uncertainty, but a large part of the
yield uncertainty depends on rainfall and weather in
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the growing regions. Years with excessive rainfall
tend to have lower yields.
While increasing yield is an impactful interven-

tion, there are challenges and risks. There has been
work on the development of new high-yield seed
varieties that show promise (Dalrymple 2012). How-
ever, reports from agencies promoting the seed indi-
cate some resistance to switching to these seed
varieties in Asia, perhaps in part due to a long and
successful history with the strain of Artemisia that is
grown there. Increasing agricultural yield requires
extensive support from the governments of the main
growing region (China, Vietnam) and has high trans-
action costs associated with implementing it. In addi-
tion, there is some risk that a large increase in
average yield could exacerbate market volatility. As
noted earlier, our analysis is based on a static model
that predicts equilibrium, but does not account for
dynamics in the interim. While increasing yield is
impactful in our model, this very impact may lead to
a period of higher price volatility, for example, the
promise of high yield induces many suppliers to
enter the market, only to exit a short time later due
to low prices.

5.5. A Price Support has Significant Impact
The demand and supply of artemisinin is matched at
a certain price that is determined by the market. In
many agricultural markets if the market price is too
low, few farmers grow that crop. So in such cases gov-
ernments often intervene in the market by offering a
minimum support-price, that is, when the market
price is lower than the support-price, government
purchases from the farmers at the support-price and
sells in years when the price is high. A similar market
intervention can be used for increasing the supply of
agricultural artemisinin and reducing price volatility.
As an example, under M2, a budget increase of
$25 million translates into a 20% increase in supply.
By comparison, a support-price set at $360 requires an
average investment of $25 million and increases sup-
ply by 30%. Furthermore, price volatility (coefficient
of variation) decreases by 60%, whereas a budget
increase of $25 million increases price volatility (by
7%). Note, however, that the budget is in terms of
spend on artemisinin, which constitutes about 30% of
the total ACT spend. ACT spend would have to
increase by approximately $80 million to generate a
20% increase in supply.
While a price support shows potential for impact,

there are barriers to implementation. Most notably is
the determination of a support price that improves
price stability while being sustainable (e.g., not so
high that it leads to excess supply with support price
consistently higher than the natural market price; not
so low that there is no meaningful effect). In

addition, artemisinin is not a pure commodity. There
are some differences in quality, which leads to a sim-
ple but crude single support price or the complexity
of a quality-dependent support price.

5.6. Other High Sensitivity Interventions
Expanding the cultivation of Artemisia to viable
regions where the crop has traditionally not been
considered and initiatives that make competing
crops less attractive to farmers also yield positive
outcomes. However, influencing the attractiveness of
rice, corn, and other competing crops is a more diffi-
cult policy intervention. Outcomes are also sensitive
to decreases in the overall incidence of malaria. Sev-
eral initiatives for malaria control and eradication
are already being implemented in malaria-endemic
countries.

6. Conclusion

Using a parsimonious model to capture the effects of
factors such as available farm space, manufacturer
capacity, farmer’s incentive to plant Artemisia,
volatility in Artemisia yield, supply of semi-synthetic
artemisinin, and demand uncertainty in the malaria
medicine market, this paper estimates the directional
impact of various supply chain interventions on over-
all supply, fill rate, and price volatility in the market.
The model is calibrated with field data to the extent
available, and a sensitivity analysis is conducted
based on this information.
The analysis shows that analytical modeling can

help illuminate impactful interventions to mitigate
market shortcomings. In the absence of analytical
modeling or other rigorous analysis, interventions
with only marginal benefits may be selected. Tight
budgets and resource constraints require implement-
ing only those interventions which have the highest
potential to stabilize the market and increase overall
supply. While this study does not include the costs of
implementing each intervention, and thus cannot
comment on the cost effectiveness, it provides a
strong basis for understanding the likely impact from
each intervention. We find that a support-price for
agricultural artemisinin, improved average yield, and
a larger and carefully managed supply of semi-syn-
thetic artemisinin have the greatest potential for
improving the supply of artemisinin-based malaria
medicine.
This study also highlights the application of model-

ing and analytical tools to address policy-relevant
problems faced by developing-country governments.
Further research should seek to understand the
dynamic behavior of the system in response to an
intervention and the role of information asymmetry
in this supply chain. In addition, future research may
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model extractors as a separate entity in order to assess
the impact of extractor strategic behavior such as
price gouging or constraining supply.
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Appendix

A.1. Notation

q = units of farm space dedicated to producing artemisinin
s = units of semi-synthetic artemisinin supply introduced to the market
Z2 = positive supply random variable; E[Z2] = 1, r2

2 = V[Z2]
Φ2(	) = cdf of Z2
l2 = expected yield per unit of farm space
Q = random organic artemisinin supply; Q = ql2Z2
Ub = random supplier utility from dedicating farm space to best
alternative to producing artemisinin; lb = E[Ub], rb

2 = V[Ub]
qb(u) = cdf of Ub

P(q) = random artemisinin spot price (and ACT price); �p qð Þ ¼ E P qð Þ½ �,
r2P qð Þ ¼ V P qð Þ½ �

c = supplier risk aversion parameter; c ≥ 0
Z1 = positive and normalized ACT market size random variable;
E[Z1] = 1, r1

2 = V[Z1]
Φ1(	) = cdf of Z1
l1 = expected value of the ACT market size
M = random size of the ACT market; M = l1Z1
a = fraction of farm space dedicated to producing artemisinin under
forward contract

c = units of farm space owned by all suppliers who could produce
artemisinin

p0 = artemisinin support-price
q* = equilibrium units of farm space dedicated to producing artemisinin
q1(p) = fraction of consumers willing to purchase ACT at price p;
q10(p) < 0; applicable to demand model M1, d(p) = Mq1(p)
b = budget for the purchase of ACT; applicable to demand model M2,
d(p) = bp�1

p1 = expected artemisinin volume in equilibrium; p1 = q*l2 + s
b = expected availability of ACT as a percent of the total need (market
size)

p2 = supplier surplus

A.2. Lemma 1A

Let g(x, y) and h(x) be continuous, differentiable func-
tions, and let X and Y be independent random vari-
ables with pdfs /X, /Y. The following lemma is used
in derivations of comparative-static results.

LEMMA A1. A � E g X;Yð Þh Xð Þ½ � � E g X;Yð Þ½ �E h Xð Þ½ �:

g gx h0 A

1 =0 =0
2 >0 >0 >0 >0
3 >0 >0 <0 <0
4 >0 <0 >0 <0
5 >0 <0 <0 >0
6 <0 >0 >0 >0
7 <0 >0 <0 <0
8 <0 <0 >0 <0
9 <0 <0 <0 >0

PROOF. A1-1: If gx = 0, then g(x, y) = a + k(y) for
some function k(y), and E g X;Yð Þh Xð Þ½ � ¼ E aþ k Yð Þð Þ½
h Xð Þ� ¼ E aþ k Yð Þ½ �E h Xð Þ½ �:

A1-2:

E g X;Yð Þh Xð Þ½ � ¼ E g X;Yð Þ½ �
Z

h xð Þf xð Þdx;
where

f xð Þ ¼ E g x;Yð Þ½ �
E g X;Yð Þ½ �
� �

/X xð Þ:

Note that f(x) is a valid pdf (i.e., non-negative and
integrates to 1). From gx > 0, it follows that distribu-
tion f(x) has first-order stochastic dominance over dis-
tribution /X(x), i.e.,Z1

x

f tð Þdt�
Z1
x

/X tð Þdt ðA:1Þ

and the inequality is strict for some y (e.g., for any x
such that /X(z) > 0 for some z ≥ x). From h0 > 0 and
equation (A.1) it follows thatZ

h xð Þf xð Þdx[
Z

h xð Þ/X xð Þdx ¼ E h Xð Þ½ �: ðA:2Þ

A1-3: The proof parallels the proof of A1-2, except
the sign of h0 is reversed, which causes the sign of A to
be reversed.
A1-4: The proof parallels the proof of A1-2, except

that gx < 0 causes inequality equation (A.1) to be
reversed, which causes the sign of A to be reversed.
A1-5: The proof parallels the proof of A1-4, except

the sign of h0 is reversed, which causes the sign of A in
A1-4 to be reversed.
A1-6 through A1-9: Let ĝ ¼ �g and ĝx ¼ �gx.

From

A ¼ � E �g X;Yð Þh Xð Þ½ � � E �g X;Yð Þ½ �E h Xð Þ½ �ð Þ
¼ � E ĝ X;Yð Þh Xð Þ½ � � E ĝ X;Yð Þ½ �E h Xð Þ½ �ð Þ

it follows that the signs of A in A1-6 and A1-7 are
obtained from A1-4 and A1-5 (for which
ĝx ¼ �gx\0) but with the signs reversed. Similarly,
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the signs of A in A1-8 and A1-9 are obtained from
A1-2 and A1-3 but with the signs reversed. 

A.3. Derivation of Results in Table 2

For given parameter y 2 {a, b, c, l1, r1, s, l2, r2, lb}

q�0 yð Þ ¼ �Fy q�; yð Þ
Fq� q�; yð Þ

(obtained by taking the total derivative of both sides
of the equilibrium condition F(q*, y) = 0 with respect
to y and solving for q*0(y)). Note that �p0 qð Þ\0

qb
0 uð Þ[ 0:

From the preceding inequalities, it follows that

Fq� q�; yð Þ[ 0;

and thus the sign of q�0 yð Þ is determined by the sign
of �Fy q�; yð Þ:
Defining F(	) in accordance with the risk-neutral

equilibrium condition (6),

M1 : F q�; yð Þ ¼ q� � cqb

l2E max q1
�1 min

ql2Z2 þ s

l1Z1
; 1

� �� �
; p0

� �� 	� �

M2 : F q�; yð Þ ¼ q� � cqb l2E
b

q�l2Z2 þ s

� 	� �
:

Note that the truncation functions, max{	, 	} and
min{	, 	}, affect the sensitivity of

qb l2E max q1
�1 min

ql2Z2þ s

l1Z1
;1

� �� �
;p0

� �� 	� �
ðA:3Þ

to changes in parameter values relative to

qb l2E q1
�1 q�l2Z2 þ s

l1Z1

� �� 	� �
; ðA:4Þ

but not the direction of change. Thus, to simplify
the presentation of analysis, we predominantly use
equation (A.4) in place of equation (A.3). We use
the form given in equation (A.3) only when the
truncation functions play a role in the results.

A.3.1. Demand Model M1
A.3.1.1. Increasing a.

Fa ðq�; aÞ ¼ 0 ) q�0 að Þ ¼ 0; p10 að Þ ¼ 0

A.3.1.2. Increasing c.

Fc q�; cð Þ ¼ �qb l2E q1
�1 q�l2Z2 þ s

l1Z1

� �� 	� �
\0

) q�0 cð Þ[ 0; p1
0 cð Þ[ 0

A.3.1.3. Increasing l1.

@q1
�1 q�l2z2þs

l1z1


 �
@l1

[ 0 for any realization

ðz1; z2Þ )
@E q1

�1 q�l2Z2þs
l1Z1


 �h i
@l1

[ 0

) Fl1 q�; l1ð Þ\0

) q�0 l1ð Þ[ 0; p1
0 l1ð Þ[ 0

A.3.1.3. Increasing r1.

Fr1 q�; r1ð Þ ¼ �cqb
0 l2E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	� �

� @

@r1
l2E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	

We write Z1 in terms of a standardized random
variable f with pdf φf as follows: Z1 = 1 + r1f, where
E f½ � ¼ 0;V f½ � ¼ 1; and f[ � 1=r1 (to assure positive
Z1).
If q�100

1 ðxÞ ¼ 0 (linear demand), then q1
�10 xð Þ ¼ �a

with a > 0 (a is the slope of q1
�1), and

@

@r1
E q1

�1 q�l2Z2þ s

l1Z1

� �� 	
¼ a q�l2þ sð Þ

l1
E

1

1þr1f

� �2

f

" #
:

Letting gðxÞ ¼ 1
1þr1x


 �2
and h(x) = x, we have g > 0,

gx < 0, and h0 > 0. Thus, from Lemma A1-4,

E
1

1þ r1f

� �2

f

" #
\E

1

1þ r1f

� �2
" #

E f½ � ¼ 0 ðA:5Þ

and

@

@r1
E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	

¼ a q�l2 þ sð Þ
l1

E
1

1þ r1f

� �2

f

" #
\0;

which implies Fr1 q�; r1ð Þ[ 0; q�0 r1ð Þ\0; and
p10 r1ð Þ\0:
Assume that the right endpoint of the support of

Z1 = 1 + r1f is not more than 2, i.e., the realized mar-
ket size is assured to be no more than 100% more than
the mean:

max 1þ r1ff g� 2: ðA:6Þ
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Note that

@

@r1
E q1

�1 q�l2Z2þ s

l1Z1

� �� 	

¼E q1
�10 q�l2Z2þ s

l1Z1

� �
q�l2Z2þ s

l1

� �� � �f

1þr1fð Þ2
 !" #

Let gðx; yÞ ¼ q1
�10 q�l2yþs

l1 1þr1xð Þ

 �

q�l2yþs
l1


 �
and hðxÞ

¼ �x
1þr1xð Þ2 : Note that 1 + r1x > 0 for any realization x

of f (due to positive Z1) and h0ðxÞ ¼ r1x�1

1þr1xð Þ3 � 0 (due to

equation (A.6)) and the inequality is strict for any x
inside the support of f. Therefore, if q�100

1 ðxÞ\0

(concave demand), then g\0; gx ¼ q�100
1 ð q�l2yþs

l1ð1þr1xÞÞ
ðq�l2yþs

l1
Þ2ð �r1

l1ð1þr1xÞ2Þ[ 0; and h0 < 0. Thus, from Lemma

A1-7,

E q1
�10 q�l2Z2 þ s

l1Z1

� �
q�l2Z2 þ s

l1

� � �f

1þ r1fð Þ2
 !" #

\E q1
�10 q�l2Z2 þ s

l1Z1

� �
q�l2Z2 þ s

l1

� �� 	

� E
�f

1þ r1fð Þ2
" #

\0 ðdue to equation ðA:5Þ and

q1
�10 xð Þ\0Þ;

which implies Fr1 q�; r1ð Þ[ 0; q�0 r1ð Þ\0; and
p10 r1ð Þ\0:
If q�100

1 ðxÞ[ 0 (convex demand), then the sign
of Fr1 q�;r1ð Þ can be positive or negative depend-
ing on parameters. To gain some sense into the
determinants of the sign, we let gðx; yÞ
¼ q1

�10 q�l2yþs
l1 1þr1xð Þ

 �

q�l2yþs

l1 1þr1xð Þ2

 �

and h(x) = � x, for

which g < 0 and h0 < 0. Note that

gx ¼ q�100
1


 q�l2yþ s

l1ð1þ r1xÞ
�
 q�l2yþ s

l1

�2
 �r1
ð1þ r1xÞ4

�

�2q1
�10 q�l2yþs

l1 1þr1xð Þ
� �

q�l2yþs

l1

� �
r1

1þr1xð Þ3
 !

¼�2q1
�10 q�l2yþs

l1 1þr1xð Þ
� �

q�l2yþs

l1 1þr1xð Þ
� �

r1
1þr1xð Þ3

 !

1�0:5e
q�l2yþ s

l1 1þr1xð Þ
� �� �

;

Where eðuÞ ¼ �uq�100
1 ðuÞ

q�10
1

ðuÞ is a measure of the degree of

convexity of q1
�1 (more formally, e(u) is the elasticity

of function q1
�10(u)). For example, if e > 0.5 for all

realizations of f and Z2, then gx < 0, and by Lemma

A1-9,

E q1
�10 q�l2Z2 þ s

l1Z1

� �
q�l2Z2 þ s

l1 1þ r1fð Þ2
 !

�fð Þ
" #

[E q1
�10 q�l2Z2 þ s

l1Z1

� �
q�l2Z2 þ s

l1 1þ r1fð Þ2
 !" #

E �f½ � ¼ 0;

and Fr1 q�; r1ð Þ\0; q�0 r1ð Þ[ 0; and p10 r1ð Þ[ 0: Simi-
larly, if e < 0.5 for all realizations of f and Z2, then
gx < 0, which implies Fr1 q�; r1ð Þ[ 0; q�0 r1ð Þ\0; and
p10 r1ð Þ\0:

A.3.1.4. Increasing s. Note that
q1

�1 q�l2z2þs
l1z1


 �
@s \0

for any realization (z1, z2) of (Z1, Z2) ⇒

@E q�1
1

q�l2Z2þs

l1Z1


 �h i
@s \0 ) Fs q�; sð Þ[ 0 ) q�0 sð Þ\0:

Now consider the sign of p10 sð Þ ¼ 1þ l2q
�0 sð Þ

¼ 1þ l2
�Fs q�;sð Þ
Fq� q�;sð Þ

 �

:

Fs q
�; sð Þ ¼� cqb

0 l2E q1
�1 q�l2Z2þ s

l1Z1

� �� 	� �

�l2E q1
�10 q�l2Z2þ s

l1Z1

� �
1

l1Z1

� �� 	

Fq� q�; sð Þ ¼1� cqb
0 l2E q1

�1 q�l2Z2þ s

l1Z1

� �� 	� �

�l2E q1
�10 q�l2Z2þ s

l1Z1

� �
1

l1Z1

� �� �
l2Z2ð Þ

� 	

If q�100
1 ðxÞ ¼ 0 (linear demand), then by Lemma

1A-1,

Fs q
�; sð Þ ¼ cqb

0 l2E q1
�1 q�l2Z2 þ s

l1Z1

� �� 	� �

� l2E �q1
�10 q�l2Z2 þ s

l1Z1

� �� �
1

l1Z1

� �� 	

¼ cqb
0 l2E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	� �

� l2E �q1
�10 q�l2Z2 þ s

l1Z1

� �� 	
E

1

l1Z1

� 	

Fq� q�; sð Þ ¼ 1þ cqb
0 l2E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	� �

� l2E �q1
�10 q�l2Z2 þ s

l1Z1

� �
l2

l1Z1

� �� 	
E Z2½ �

¼ 1þ cqb
0 l2E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	� �

� l2E �q1
�10 q�l2Z2 þ s

l1Z1

� �
l2

l1Z1

� �� 	
:
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Therefore,

If q�100
1 ðxÞ\0 (concave demand), then �q�100

1 ðxÞ\0
and by Lemma A1-2

E �q1
�10 q�l2Z2 þ s

l1Z1

� �
1

l1Z1

� �� �
l2Z2ð Þ

� 	

[E �q1
�10 q�l2Z2 þ s

l1Z1

� �
1

l1Z1

� �� �� 	
l2;

ðA:7Þ

(i.e., g(x, y) = �q1
�10 q�l2xþs

l1y


 �
1
l1y


 �
 �
and h(x) = l2x

in the notation of Lemma A1) which implies

If q�100
1 ðxÞ[ 0 (convex demand), then inequality

equation (A.7) is reversed, i.e.,

D � E �q1
�10 q�l2Z2 þ s

l1Z1

� �
1

l1Z1

� �� 	

� E �q1
�10 q�l2Z2 þ s

l1Z1

� �
Z2

l1Z1

� �� 	
1

l2
[ 0;

and both p10(s) > 0 and p10(s) < 0 are possible.
From the fact that p10(s) > 0 for linear demand, it is

clear that there exist convex demand functions for
which p10(s) > 0 occurs (e.g., introduce a slight degree
of convexity to a linear demand function). As a simple
example of p10(s) < 0, suppose q1 = 1/p, r1 = 0, l1 = l2
= 1, s = s1 = 1, Z2 is uniform on [0.5, 1.5], and other
parameters and functions are such that the equilib-
rium quantity is q1* = 5. Then the expected price in
equilibrium is

�p1 ¼ E q1
�1 q�1l2Z2 þ s1

l1Z1

� �� 	
¼ E

1

q�1l2Z2 þ s1

� 	

¼ E
1

5Z2 þ 1

� 	

 0:18

and at this price, fraction qb �p1
� �

of farm space is

dedicated to producing artemisinin leading to a total

supply of p1(s1) = cqb �p1
� �

l2 þ s1 = q1*l2 + s1 = 5 + 1

= 6. Now suppose that s = s2 = 3. Let q2 = q1* –
(s2 – s1)/l2 = 3, which yields the same expected total
supply, i.e., q2l2 + s2 = q1*l2 + s1 = 6. However, the
expected price at this quantity is

p2 = E q1
�1 q2l2Z2þs2

l1Z1


 �h i
¼ E 1

3Z2þ3

h i

 0:17\�p1:

If cqb(p2) < q2 = 3, then more suppliers will exit the
market leading to equilibrium quantity q2* < q2 = 3,
and a reduction in total supply, i.e.,

q2*l2 + s2 < q1*l2 + s1 if and only if qb(p2) < 0.6
qb �p1
� �

:
In other words, if the slope of qb(	) in the neighbor-

hood of �p1 is sufficiently steep, then total supply at
s2 = 3 is less than total supply at s1 = 1; otherwise
total supply increases.

A.3.1.5. Increasing l2.
Note that Fl2 q�; l2ð Þ\0 and q�0 l2ð Þ[ 0 ,
@
@l2

l2E q1
�1 q�l2Z2þs

l1Z1


 �h i
¼ @

@l2
l2�p q�; l2ð Þ[ 0

@

@l2
l2�p q�; l2ð Þ ¼ �p q�; l2ð Þ 1��l2�pl2 q�; l2ð Þ

�p q�; l2ð Þ

 !
;

where
�l2�pl2 q�;l2ð Þ

�p q�;l2ð Þ is the yield-elasticity of expected

price, which is positive, i.e., @
@l2

q1
�1 q�l2z2þs

l1z1


 �
\0 for

any realization (z1, z2) of (Z1, Z2).
Thus, the sign of q�0 l2ð Þ depends on whether the

yield-elasticity of expected price is more or less than

1. We require
�l2�pl2

q�;l2ð Þ
�p q�;l2ð Þ [ 1 (e.g., average equilib-

rium price is relatively sensitive to increases in aver-
age yield) for q* to be decreasing in l2, which we
suspect to be unusual in practice. However, in gen-
eral, both q�0 l2ð Þ\0 and q�0 l2ð Þ[ 0 are possible.

p1
0 sð Þ ¼ 1þ �Fs q�; sð Þ

Fq� q�; sð Þ=l2
¼1�

cqb
0 l2E q1

�1 q�l2Z2þs
l1Z1


 �h i
 �
l2E �q1

�10 q�l2Z2þs
l1Z1


 �
1

l1Z1


 �h i
1
l2
þ cqb0 l2E q1�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1�10 q�l2Z2þs

l1Z1


 �
Z2

l1Z1


 �h i

[ 1�
cqb

0 l2E q1
�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1

�10 q�l2Z2þs
l1Z1


 �
1

l1Z1


 �h i
1
l2
þ cqb0 l2E q1�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1�10 q�l2Z2þs

l1Z1


 �
1

l1Z1


 �h i [ 0:

p1
0 sð Þ ¼ 1þ �Fs q�; sð Þ

Fq� q�; sð Þ=l2
¼ 1�

cqb
0 l2E q1

�1 q�l2Z2þs
l1Z1


 �h i
 �
l2E �q1

�10 q�l2Z2þs
l1Z1


 �h i
E 1

l1Z1

h i
1
l2
þ cqb0 l2E q1�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1�10 q�l2Z2þs

l1Z1


 �h i
E 1

l1Z1

h i [ 0:
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Note that p10 l2ð Þ ¼ q� 1� �l2q
�0 l2ð Þ
q�


 �
; and thus

p1
0 l2ð Þ[ 0 , �l2q

�0 l2ð Þ
q�

\1;

where �l2q
�0 l2ð Þ
q� is the yield-elasticity of the equilib-

rium quantity. Note that

A.3.1.6. Increasing r2. We write Z2 in terms of its
standardized random variable, i.e.,

Z2 = 1 + r2f,

where E[f] = 0, V[f] = 1, and f > �1/r2 (to assure
positive Z2). Accordingly,

Fr2 q�; r2ð Þ ¼ cqb
0 l2E q1

�1 q�l2 1þ r2fð Þ þ s

l1Z1

� �� 	� �

� l2E �q1
�10 q�l2 1þ r2fð Þ þ s

l1Z1

� �
q�l2f
l1Z1

� �� 	

If q�100
1 ðxÞ ¼ 0 (linear demand), then

�q1
�10 xð Þ ¼ a[ 0 and

E �q1
�10 q�l2 1þ r2fð Þ þ s

l1Z1

� �
q�l2f
l1Z1

� �� 	

¼ q�l2a
l1

E
1

Z1

� 	
E f½ � ¼ 0;

which implies q�0 r2ð Þ ¼ p10 r2ð Þ ¼ 0:
If q�100

1 ðxÞ[ 0 (convex demand), then �q�100
1 ðxÞ\0

and by Lemma 1A-4,

E �q1
�10 q�l2 1þ r2fð Þ þ s

l1Z1

� �
q�l2
l1Z1

� �� �
fð Þ

� 	

\E �q1
�10 q�l2 1þ r2fð Þ þ s

l1Z1

� �
q�l2
l1Z1

� �� 	
E f½ � ¼ 0;

(i.e., g(x, y) = �q1
�10 q�l2 1þr2xð Þþs

l1y


 �
q�l2
l1y


 �
and h(x) = x

in the notation of Lemma A1) which implies
Fr2 q�; r2ð Þ\0; q�0 r2ð Þ[ 0; and p10 r2ð Þ[ 0:

The same approach may be used to conclude that a
concave demand function implies q�0 r2ð Þ\0 and
p10 r2ð Þ\0:

A.3.1.7. Increasing lb. Assume that Ub is a non-
negative random variable that is based on either of
the following two models:

Ub = lb + Zb, where E[Zb] = 0, V[Zb] = rb
2

Ub = lbZb, where E[Zb] = 1, V[Zb] = rb
2.

We make this assumption so that we can isolate the
effect of changing mean while keeping a measure of
variation fixed. For example, if Ub = lb + Zb, then
V[Ub] = V[Zb] = rb

2 remains fixed as lb increases. If
Ub = lbZb, then the coefficient of variation of Ub is
[lbrb]/lb = rb, which remains fixed as lb increases.
For the above two models of Ub,

@qb uð Þ
@lb

¼ @

@lb
P lb þ rbZb � u½ � ¼ @

@lb
P Zb � u� lb

rb

� 	
\0

@qb uð Þ
@lb

¼ @

@lb
P lbZb � u½ � ¼ @

@lb
P Zb � u

lb

� 	
\0:

Therefore,

Flb q�; lbð Þ ¼ �c
@

@lb
qb l2E q1

�1 q�l2Z2 þ s

l1Z1

� �� 	� �
[ 0;

which implies q�0 lbð Þ\0 and p10 lbð Þ\0:

A.3.1.8. Increasing p0.
From

�p qð Þ ¼ E max q1
�1 min

ql2Z2 þ s

l1Z1
; 1

� �� �
; p0

� �� 	
;

it is clear that �p qð Þ is non-decreasing in p0, and thus
F q�; p0ð Þ ¼ q� � cqb l2�p qð Þð Þ is non-increasing in p0,
which implies q�0 p0ð Þð0 and p10 p0ð Þ� 0:

�l2q
�0 l2ð Þ
q�

¼;
l2Fl2 q�; l2ð Þ
q�Fq� q�; l2ð Þ ¼

cqb
0 l2E q1

�1 q�l2Z2þs
l1Z1


 �h i
 �
l2E �q1

�10 q�l2Z2þs
l1Z1


 �
Z2

l1Z1


 �h i
1
l2
þ cqb0 l2E q1�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1�10 q�l2Z2þs

l1Z1


 �
Z2

l1Z1


 �h i

�
cqb

0 l2E q1
�1 q�l2Z2þs

l1Z1


 �h i
 �
E q1

�1 q�l2Z2þs
l1Z1


 �
1
q�


 �h i
1
l2
þ cqb0 l2E q1�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1�10 q�l2Z2þs

l1Z1


 �
Z2

l1Z1


 �h i

\
cqb

0 l2E q1
�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1

�10 q�l2Z2þs
l1Z1


 �
Z2

l1Z1


 �h i
1
l2
þ cqb0 l2E q1�1 q�l2Z2þs

l1Z1


 �h i
 �
l2E �q1�10 q�l2Z2þs

l1Z1


 �
Z2

l1Z1


 �h i\1

) p1
0 l2ð Þ[ 0:
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A.3.2. Demand Model M2
A.3.2.1. Increasing a.

Fa q�; að Þ ¼ 0 ) q�0 að Þ ¼ 0; p1
0 að Þ ¼ 0

A.3.2.2. Increasing b.

Fb q�; bð Þ ¼ �cqb
0 l2E

b

q�l2Z2 þ s

� 	� �

� l2E
1

q�l2Z2 þ s

� 	
\0

) q�0 bð Þ[ 0; p1
0 bð Þ[ 0

A.3.2.3. Increasing c.

Fc q�; cð Þ ¼ �qb l2E
b

q�l2Z2 þ s

� 	� �
\0

) q�0 cð Þ[ 0; p1
0 cð Þ[ 0

A.3.2.4. Increasing l1 and r1. F does not depend
on market parameters, and thus q�0 l1ð Þ ¼ 0,
p10 l1ð Þ ¼ 0, q�0 r1ð Þ ¼ 0, p10 r1ð Þ ¼ 0:

A.3.2.5. Increasing s. Note that
@
@s

b
q�l2z2þs


 �
\0 for any realization z2 of Z2. Thus,

@
@s E

b
q�l2Z2þs

h i
\0 and q�0 sð Þ\0:

However, p10(s) > 0 and p10(s) < 0 are possible. One
example of positive and negative slopes of p1(s) can
be found in section A.3.1.4, wherein b = 1, and
another example is illustrated in Figure 8.

A.3.2.6. Increasing l2.

@

@l2
l2E

b

q�l2Z2 þ s

� 	
¼ E

b q�l2Z2 þ sð Þ � bl2q
�Z2

q�l2Z2 þ sð Þ2
" #

¼ E
bs

q�l2Z2 þ sð Þ2
" #

[ 0

) Fl2 q�; l2ð Þ\0 and q�0 l2ð Þ[ 0

) p1
0 l2ð Þ ¼ q� � l2 �q�0 l2ð Þ� 

[ 0:

A.3.2.7. Increasing r2. We write Z2 in terms of its
standardized random variable, i.e.,

Z2 = 1 + r2f,

where E[f] = 0, V[f] = 1, and f > �1/r2 (to assure
positive Z2). Accordingly,

Fr2 q�; r2ð Þ ¼ cqb
0 l2E

b

q�l2 1þ r2fð Þ þ s

� 	� �

� l2E
bq�l2f

q�l2 1þ r2fð Þ þ sð Þ2
" #

E
bq�l2f

q�l2 1þ r2fð Þ þ sð Þ2
" #

\bq�l2E q�l2 1þ r2fð Þ þ sð Þ�2f
h i

E f½ � ¼ 0

(due to Lemma A1-4)
⇒ q�0 r2ð Þ > 0 and p10 r2ð Þ[ 0:

A.3.2.7. Increasing lb. As in section A.3.1.7,
assume that Ub is a nonnegative random variable that
is based on either of the following two models:

Ub = lb + Zb, where E[Zb] = 0, V[Zb] = rb
2

Ub = lbZb, where E[Zb] = 1, V[Zb] = rb
2.

Then

@qb uð Þ
@lb

¼ @

@lb
P lb þ rbZb � u½ � ¼ @

@lb
P Zb � u� lb

rb

� 	
\0

@qb uð Þ
@lb

¼ @

@lb
P lbZb � u½ � ¼ @

@lb
P Zb � u

lb

� 	
\0:

Therefore,

Flb q�; lbð Þ ¼ �c
@

@lb
qb E

b

q�l2Z2 þ s

� 	� �
[ 0;

which implies q�0 lbð Þ\0 and p10 lbð Þ\0:

A.3.2.8. Increasing p0.

From �p qð Þ ¼ E max b
ql2Z2þs ; p0
n oh i

, it is clear that �p qð Þ is
non-decreasing in p0, and thus F q�; p0ð Þ ¼ q�

�cqb l2�p qð Þð Þ is nonincreasing in p0, which implies

q�0 p0ð Þ� 0 and p10 p0ð Þ� 0:

Notes
1A representative supplier has utility that is equal to the
average utility, ua, among the population of suppliers. To
simplify notation, we use random variable Ub to capture
all of the randomness associated with the difference in
utilities from the best alternative and artemisinin. For
example, letting UB = lb + ɛB and Ua = ua + ɛa denote the
respective utilities from a randomly selected unit of farm
space where E[ɛB] = E[ɛa] = 0, we define Ub ¼ lb þ eB � ea;
and thus the fraction of suppliers who prefer to produce
artemisinin is P [UB ≤ Ua] = P[Ub ≤ ua] = qb(ua).
2Note if q* < 0, then no artemisinin is grown/produced,
or if q* > c, then all capacity is dedicated to producing
artemisinin. We assume parameters are such that these
extreme solutions are excluded.
3Data sources on historical prices and supply can be found
in A2S2 (2012) and in Figure 1. Other (non-public) data on
market size, yield, and usage of forward contracts are
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collected and provided by UNITAID and WDI as part of
multiple projects under the A2S2 initiative.
4A risk aversion parameter of c = 0.008 is consistent
with a threshold value for participation in 50/50 gamble
of winning 0.5/c = $62,500 and losing 0.25/c = $31,125
(Howard 1988), for example, a supplier is willing to
enter a 50/50 gamble of winning $60K and losing $30K,
but not a 50/50 gamble of winning $70K and losing
$35K.
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