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he combination of insufficient funds and limited information regarding the demand in regions of desperate need pre-
T sents a great challenge to many humanitarian organizations. This study examines how a humanitarian organization
can minimize the expected shortage in delivering relief aid to regions of need, either though surface or air transportation,
in the presence of demand uncertainty with a budget constraint. The study makes four contributions. First, we show that
when there is reserved supply for air transportation, it is optimal to provide a higher service level through surface ship-
ment to regions with greater demand uncertainty. Second, we show that the demand variation plays a significant role in
the allocation of funds between surface and air shipments. The reaction of the humanitarian organization to higher
degrees of demand uncertainty can be determined by the optimal level of inventory purchased for surface shipment. If
the optimal inventory for surface shipment is less than the mean demand, then we show that increasing degrees of
demand uncertainty leads to increasing reliance on the air shipment option with greater levels of inventory reserved for
air transportation and decreasing levels of inventory reserved for surface shipment. Third, when there are opportunities
to invest in better forecasting, we find that a humanitarian organization should focus its resources on improving the
demand forecast in one region as opposed to evenly allocating resources to all regions. Fourth, we show that the expected
amount of shortages reduces with a higher number of regions to serve due to a risk-pooling effect.
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UNICEF after vaccines and pharmaceuticals. Despite
the resources dedicated to its purchase and distribu-
World Health Organization reports that nearly tion, UNICEF (2013) reports that, worldwide, only
20 million children under the age of five suffer from 10%-15% of children in need are provided with
severe acute malnutrition annually. Efforts to eradi- RUTF. RUTF supply chain continues to struggle due
cate severe acute malnutrition are critical because this to the lack of effective planning. Our work is moti-
ill condition can directly lead to child death, or act as vated by the challenges experienced in the RUTF sup-
an indirect cause of common childhood illnesses such ply chain, and responds to the desperate need to plan
as diarrhea and pneumonia which dramatically  the acquisition and distribution effectively so that the

1. Introduction

increase the fatality rate of children. World Health shortages are minimized.
Organization estimates that approximately 1 million There are many challenges and complexities that
children die every year from severe acute malnutri- UNICEF and other humanitarian organizations need

tion. To combat the rapidly deteriorating nutritional ~ to overcome in order to effectively meet the uncertain
health status of children, United Nations Children’s demand for RUTF. One of the main challenges for the
Fund (UNICEF) along with other humanitarian orga- humanitarian organization (HO), UNICEEF in this par-
nizations procure and distribute ready-to-use thera- ticular case, is that the demand for humanitarian
peutic food (RUTF) to countries of desperate need goods in different countries is extremely hard to pre-
that are highly concentrated in the Horn of Africa dict. Moreover, historical data have not been used in
such as Kenya, Ethiopia, and Somalia. RUTF is the the most efficient manner and is often not visible by
third largest commodity group for procurement at  multiple organizations to produce a common shared
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forecast. Thus, different stakeholders produce their
own forecasts, leading to further demand uncertainty
in the supply chain. However, these inefficiencies do
not prevent the HO to have access to these forecasts
in order to develop a probability distribution to
describe randomness in demand.

UNICEF prepares for this demand uncertainty
through two types of response mechanisms:

1. Slow onset demand: Slow onset corresponds to
the proactive preparation by stocking humani-
tarian goods in advance of the season. Slow
onset demand is relatively predictable because
the slowness in demand generally provides
sufficient advance warning relative to lead-
time of the need. For this reason, slow onset
utilizes the surface shipment option as it is less
expensive than air shipment. Swaminathan
et al. (2009) describe that RUTF is procured
from Nutriset, and is shipped via sea trans-
portation from France to the ports of various
countries located in the Horn of Africa.
Komrska et al. (2013) report that the sea ship-
ment cost of RUTF is $4.58 per carton from
France to the Horn of Africa.

2. Rapid onset demand: Rapid onset corresponds
to reactive preparation through emergency ship-
ments because rapid onset demand is unpre-
dictable. Rapid onset utilizes the air shipment
option as it provides a faster response time
than the surface shipment. The cost of air, how-
ever, is significantly higher than surface trans-
portation: $36.92 per carton. Rapid onset
shipment is utilized when (i) there is an ende-
mic that exceeds the expectations, and (ii) when
the inventory built through slow onset prior
to the epidemic is insufficient to meet the
demand. Thus, rapid onset demand is first sat-
isfled by slow onset inventory to the extent
possible; when the slow onset inventory is
insufficient, air shipment is utilized to cover the
shortfall.

Humanitarian organizations often have to create
separate funds for slow onset demand and rapid
onset demand, and determine the funds to be allotted
for each purpose. UNICEF, for example, determines
the necessary budget for slow onset demand and
rapid onset shipments at the beginning of each plan-
ning cycle (corresponding to 1 year). UNICEF
reserves a specific fund called the Emergency Pro-
gramme Fund (EPF) in order to provide rapid
response to rising emergency needs. As a result, the
funds for rapid onset shipments come from a different
budget than the funds allocated for slow onset
response. Figure 1 shows that UNICEF allocated
$821.5 million in 2015 for slow onset shipments of all

humanitarian goods, and $15.2 million for its EPF
program that provides the funds for rapid onset
shipments.

The financial flows within UNICEF's RUTF pro-
grams are described in Komrska et al. (2013); we next
elaborate how these funds are used for the procure-
ment and distribution decisions of RUTF. Figure 2
describes the annual financial planning for the slow
onset and rapid onset response mechanisms at UNI-
CEF. According to this financial planning, UNICEF
Programme Division makes two financial decisions at
the beginning of each planning cycle: (i) Determine
the amount of money to be allocated to local UNICEF
Country Offices for the procurement and surface
shipment of RUTF in advance of the season (i.e., the
amount of funds allocated for slow onset response
mechanism); and, (ii) determine the amount of money
to be allocated for UNICEF EPF for the purchase and
air shipment of RUTF in rapid onset response mecha-
nism. Thus, UNICEF Programme Division allocates a
fixed budget to each UNICEF Country Office and to
EPF at the beginning of the annual planning cycle.
The funds allocated from the UNICEF Programme
Division to local UNICEF Country Offices enables
these local UNICEF officers to procure RUTF during
the year. Because UNICEF Country Offices do not
receive credit (or other benefits) for not spending the
allotted budget, they spend the total budget on the
humanitarian goods according to the UNICEF Pro-
gramme Division’s procurement plans. The Pro-
gramme Division uses demand projections from
Country Offices along with historical data to develop
forecasts of demand. These forecasts account for both
slow onset and rapid onset demand in the upcoming
quarter. UNICEF's EPF funds, on the other hand, are
used to satisfy rapid onset demand via air transport

Figure 1 UNICEF’s Program Division Budget Allocation in 2015
between Slow Onset and Rapid Onset Response Mechanisms
[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 2 Financial Planning at UNICEF Programme Division, and
Funds Allocation to UNICEF Country Offices and Emergency
Programme Fund
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when there is insufficient local supply. Our study
sheds light into how much money should be allocated
for the slow onset procurement and surface shipment
at UNICEF Programme Division and how much
money should be allocated for the procurement and
air shipment at UNICEF EPF.

Demand uncertainty, as a consequence of poor fore-
casting, is known to yield poor results in commercial
settings. In humanitarian operations, however, the
consequences can be much more devastating than in
commercial environments. This is why an HO needs
to prepare well for its rapid onset shipments so that it
can provide rapid response to the rising human
needs. The inefficiencies in the distribution of human-
itarian goods can lead to deterioration of health for
those who are in desperate need of humanitarian
goods. Komrska et al. (2013) identify two reasons for
the shortage of RUTF in 2008 that caused 8.4 million
to suffer from “hunger emergency” in Ethiopia,
Kenya, and Somalia: Poor forecasting of demand for
RUTF, and lack of reserved emergency funds. Despite
the late addition of $8.2 million in emergency funds,
the problem was not resolved effectively because it
took additional time for UNICEEF to get the additional
emergency funding approved, and to purchase and
ship RUTF to the region in crisis. This example shows
that, when not accounted upfront, the effectiveness of
an additional financial support is clearly limited, and
therefore an HO has to effectively plan for its bud-
get allocation and reserve funds for emergency air
shipments at the beginning of the planning cycle.

Our study provides insight into how critical it is to
design an effective inventory and transportation
mechanism with surface and air shipment of humani-
tarian goods, not only for the children suffering from
malnutrition in Africa, but also for the humanitarian
needs in the recent Syrian refugee crisis. While there
has been no purchase of RUTF and ready-to-use

supplementary food (RUSF) prior to 2014, UNICEF
has reported an initial need of 500,000 children in the
refugee camps located in Lebanon, and another
150,000 in the camps located in Turkey in the first
6 months of 2014. With the recent influx, the number
of children in need of RUTF and RUSF in the Turkish
refugee camps has increased from 150,000 to numbers
exceeding 750,000 in August 2015." Thus, the demand
for such humanitarian goods are not easily pre-
dictable. The uncertainty in demand is even further
exacerbated with the ongoing migration from the
refugee-hosting nations to the European countries. In
effect, demand can be viewed as a composite of a base
level of uncertain demand in each region combined
with periodic demand shocks (e.g., Syrian crisis) that
are extremely difficult to predict. As a consequence, it
is impractical to allocate the entire budget for less
costly surface shipments; the HO reserves a portion of
the budget for emergency air shipments to hedge
against unpredictability of demand.

Our study examines how an HO can optimize the
expenditure of a limited budget that minimizes the
expected shortage of perishable humanitarian goods
by making the following decisions in the presence of
demand uncertainty: (i) the amount of humanitarian
goods to be acquired and distributed through surface
transportation to each country, and (ii) the amount of
humanitarian goods to be acquired and distributed
via air shipment when necessary. We build an analyti-
cal model in order to determine the optimal stocking
decisions for the surface and air shipment alternatives
in the presence of demand uncertainty while operat-
ing with a limited budget. The model features an
objective function that minimizes the total expected
shortage. After the realization of demand in each
country, HO distributes relief aid that is reserved for
air transportation to the regions of need. We examine
how different factors, including the unit total landed
costs, budget, variation in demand, correlation
between demands, and the number of regions to
serve, impact the effectiveness of the humanitarian
operations. Our analysis provides insights on the
types of effort that further improve the effectiveness
of humanitarian operations.

Our study makes four contributions. First, when
there is money reserved for air shipments, we show
that it is optimal to provide a higher service level
through surface transportation to the regions with
greater demand uncertainty. However, when the air
shipment alternative is costly and is abandoned, it is
optimal to provide an equal service level to each
region regardless of the level of uncertainty in their
needs. Second, we provide insight regarding the
impact of demand uncertainty on the optimal service
levels through surface and air shipments. We identify
that the HO’s reaction to higher degrees of demand
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uncertainty depends on the optimal service level
describing the level of inventory purchased for sur-
face shipment. If the optimal service level for surface
shipment is negative (implying that the inventory for
surface shipment is less than the mean demand), then
we show that the HO relies more on the air shipment
option by increasing its inventory purchased for air
shipment, while decreasing its service level for the
surface shipment alternative. Alternatively, if the
optimal service level for surface shipment is positive
(implying that the inventory for surface shipment is
greater than the mean demand), then the HO reduces
its reliance on the air shipment and increases its ser-
vice level for the surface shipment option. Third, we
demonstrate that the HO should focus its resources
and efforts to reduce demand uncertainty in one
region as opposed to equally allocating resources to
reduce demand uncertainty in all regions. This might
seem like a surprising result at first sight, however,
eliminating uncertainty in one region enables the HO
to reduce the need for air shipments. Thus, the relief
organization can provide a higher service level to the
region with demand uncertainty through the less
costly surface shipment alternative. Fourth, when the
budget increases linearly in the number of regions to
serve, a higher number of regions increases the bene-
fits from the joint planning of surface and air ship-
ments due to the risk-pooling effect. However,
correlation between the demands in different regions
can reduce the benefits from this model that simulta-
neously optimizes surface and air shipments.

The study is organized as follows: section 2 pro-
vides a literature review and describes how our study
departs from earlier publications. Section 3 intro-
duces the general model along with its analysis.
Section 4 presents the analysis and develops the tech-
nical results. Using data from humanitarian and relief
organizations, section 5 demonstrates the impact of
factors influencing the effectiveness of humanitarian
operations. Section 6 discusses how the results alter
under various extensions. Section 7 provides conclu-
sions and managerial insights. The online supplement
contains all the proofs and derivations.

2. Literature Review

In this section, we describe how our work is related
with the following streams of literature that are close
to our study: (i) Procurement and inventory manage-
ment, (ii) transportation/distribution models, and (iii)
Newsvendor Problem.

The literature pertaining to procurement and inven-
tory management is rich for commercial environ-
ments; however, the insights are often inapplicable
for HOs because of the fundamental differences.
Unlike corporations, the objective of an HO would

not be profit maximization, but rather making posi-
tive impact on humanity such as saving lives, reduc-
ing malnutrition, and maximizing service levels for
humanitarian goods. Moreover, the problems that
HOs confront are often more challenging due to bud-
get limitations. There are a few studies that examine
the optimal allocation of limited budget to mitigate
the negative impact of disasters. Gupta et al. (2016)
introduce a new paradigm shift in designing opera-
tions in disaster management. Salmeron and Apte
(2010) focus on pre-establishing capacity for ware-
houses, medical facilities, ramp spaces, and shelters
within a limited budget prior to a disaster so that the
expected number of casualties is minimized. Under
limited budget, Vanajakumari et al. (2016) examine
an integrated optimization model, which focuses on
the problems encountered in the last mile distribution
such as determining the locations for temporary
warehouse and inventory level along with the num-
ber of trucks and the routing of trucks from the ware-
house to the point of distribution. Rather than
focusing on the last mile, our study departs from Sal-
meréon and Apte (2010) and Vanajakumari et al.
(2016) by focusing on the upstream distribution of
relief aid, which can be perceived as a macro-level
problem for the headquarters of an international HO.
Ni et al. (2018) examine inventory location position
in preparing for disaster response operations, and
Toyosaki et al. (2017) provide guidance on inventory
collaboration between humanitarian organizations.

Eftekhar et al. (2014) also focus on the macro-level
problem for an international HO while limiting the
scope to vehicle procurement. Eftekhar et al. (2016)
expand the same emphasis by examining the role of
media exposure. Besiou et al. (2014) examine the
impact of earmarked funding in the purchasing deci-
sion of vehicles in designing the distribution opera-
tions both from the perspectives of minimizing total
cost and maximizing service levels for an interna-
tional HO. Natarajan and Swaminathan (2014),
Natarajan and Swaminthan (2017) focus on a different
form of uncertainty associated with the timing and
amount of funding for an international HO. To the
best of our knowledge, there are no analytical studies
that focus on the problem of distributing relief aid on
an aggregate level where there are two characteristi-
cally different transportation modes. Thus, our study
fills this void in the procurement and inventory man-
agement literature. We believe that the insights we
provide in this study, when coupled with the insights
from the last mile distribution literature, would
enable an HO to increase the overall effectiveness and
efficiency within a humanitarian supply chain.

The literature on the distribution and transporta-
tion of humanitarian goods primarily focuses on the
last mile transport; de la Torre et al. (2012) provides a
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comprehensive review of the literature pertaining to
the last mile distribution operations. A majority of
these studies develop models associated with the
vehicle routing problem (VRP) with various objec-
tives such as minimizing unsatisfied demand (Yi and
Ozdamar 2007), cost minimization (Huang et al.
2012), minimizing latest arrival time (Campbell et al.
2008), and maximizing travel reliability (Vitoriano
et al. 2009). Our study is similar to these articles as
the objective for our study is minimizing shortages.
However, our work departs from these publications
in two ways: (i) Earlier publications using a VRP
approach examine shortages under deterministic
demand and our study considers demand uncertainty
in the stocking of humanitarian goods; (ii) earlier pub-
lications focus on the routing decisions, and our work
emphasizes the mode of transportation, specifically
surface and air transportation, and the amount of
inventory dedicated to each of these delivery modes.
While the majority of studies focus on distribution
through ground transportation, De Angelis et al.
(2007) and Barbarosoglu et al. (2002) study the distri-
bution of humanitarian goods using helicopters.
Parvin et al. (2018) examine the role of information
sharing in coordinating shipments in malaria medi-
cine, and Kazaz et al. (2016) present the impact of
interventions in the malaria medicine supply chains.

This study, if stripped off its context, belongs to the
literature associated with Newsvendor Problem using
flexibility with a limited budget. Utilizing flexibility
in the presence of stochastic demand has been studied
extensively. The different forms of flexibility that have
been examined under the Newsvendor literature
includes flexible resources/process (Kouvelis and
Tian 2014, Van Mieghem 1998), dual sourcing (Tomlin
and Wang 2005), and responsive pricing (Biller et al.
2006). In our study, air transportation provides flexi-
bility to HOs due to the short lead-time which enables
the HO to respond to demand fluctuations in different
countries. To the best of our knowledge, there is no
analytical study that considers air transportation as a
flexible resource and investigate how an HO can uti-
lize it to reduce the negative impact of demand uncer-
tainty. Thus, our study enriches the literature by
studying a new form of flexibility.

Pasandideh et al. (2011) and Serel (2012) incorpo-
rate a budget constraint while using the Newsvendor
framework. Our study differs from these earlier pub-
lications as we minimize the expected shortage of
demand, rather than minimizing the total expected
cost or maximizing the expected profit, under a given
limited budget. Although the Newsvendor Problem
has been extensively studied in the literature, there
are no studies that consider minimizing expected
shortage of demand utilizing different shipment
modes with a budget constraint to the best of our

knowledge. From this perspective, our problem can
be considered as the “non-profit” version of the
Newsvendor Problem. This distinction between our
setting and the Newsvendor Problem warrants
emphasis. As noted in section 1, HO funding is often
insufficient to cover the total need. In stark contrast
with the Newsvendor Problem that includes both
shortage and excess costs in the objective, our prob-
lem focuses solely on shortages, that is, satisfying as
much need as possible from available funds. More-
over, unsatisfied demand in our model is not back-
logged. Thus, our treatment of unsatisfied demand is
consistent with the lost sales formulation of the
Newsvendor Problem. As a result, our model is tech-
nically more complex than the traditional Newsven-
dor Problem with backlogged demand. More
importantly, our objective function with the mini-
mization of expected shortage with a cost considera-
tion under a limited budget arises in practice (e.g.,
late deliveries are not beneficial in solving the crisis).

Despite the many challenges arising due to demand
uncertainty in relief aid distribution, most of the stud-
ies in the literature employ deterministic demand.
There are a few studies that examine the problem of
distributing humanitarian goods while incorporating
demand uncertainty. Barbarosoglu and Arda (2004)
incorporate demand uncertainty, however, their anal-
ysis is limited to analyzing the response to a specific
type of disaster, earthquakes, under different demand
values with a finite number of scenarios. Gongalves
et al. (2013) present a case study for World Food Pro-
gramme distributing humanitarian aid in Ethiopia
where the optimal supply and distribution amount is
numerically derived from different scenarios with
various levels of demand. Our study analyzes a gen-
eralized problem for humanitarian aid distribution
such that the insights are robust and not limited to a
specific type of disaster, country, or form of a random
demand function.

In summary, our study contributes to the literature
as follows: (i) Our study focuses on the problem of
distributing relief aid on an aggregate level, (ii) our
work analyzes two characteristically different trans-
portation modes, specifically surface and air trans-
portation, where the air transportation mode
provides flexibility to humanitarian organizations,
(iii) we minimize expected shortage of humanitarian
goods under demand uncertainty, and (iv) our study
analyzes a generalized problem for humanitarian aid
distribution.

3. The Model

This section presents the model developed for the
managers of an HO that procures and distributes per-
ishable humanitarian goods with a limited budget to
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regions of need in the presence of demand uncer-
tainty. The objective for the managers of HO is to
minimize the total expected shortages during the
upcoming planning cycle.

The model is formulated as a two-stage stochastic
program. In stage 1, the HO makes a budget allocation
decision subject to a budget constraint. Specifically,
the HO determines the portion of the available budget
to be used for the purchase and transportation costs
of humanitarian goods shipped through surface
transportation (sea and ground transportation) to
each region (e.g., country office). The remainder of
the budget is reserved for emergency response, that
is, for the purchase and transportation costs of
humanitarian goods to be shipped through air when
necessary. We express the unit total landed cost of
purchasing and surface transportation with ¢,, and
the unit total landed cost of purchasing and air ship-
ment with c,.

We express demand in each region in currency
units and net of local supply in the region at the start
of the planning cycle. For example, suppose a particu-
lar region has 150 units of RUTF in stock, the realized
demand in the upcoming planning cycle is 1150 units,
and the purchase and surface transport cost is $10/
unit. Then net demand in RUTF units is 1000, and
$10,000 in currency units. We scale the unit total
landed cost of surface transportation to ¢, = 1, and
adjust the unit total landed cost of air c, and the regio-
nal demand using the same scale.

Let g; denote the funds allocated to region i where
i=1,2, ..., n. We assume that the ratio of landed-
cost-via-air to landed-cost-via-surface is the same
across regions. This assumption allows us to gain
additional insight into structural properties. In addi-
tion, differences in ratios across regions are generally
small for the setting motivating this work (see, e.g.,
Swaminathan et al. 2009, p. 22). We discuss the
impact of relaxing this assumption in section 6.
Because demand is stated in purchase and surface
transport funding needs by region, we express the
quantity of demand that can be satisfied by air trans-
port in the same unit, and denote as g,. The managers
of HO need to account for both transportation modes
in their budgetary planning. Therefore, for fixed
budget B, the decision q = (41, 92, - - -, Gn, §2) = 0 must

n
satisfy > gi + .. <B. Our budget B can be consid-
i=1

ered as the amount of money that is free from the
fixed costs that might incur as a result of operations in
each country. Because there is no cost associated with
over-stocking, HO will exhaust its entire budget in
each planning cycle. Thus, the budget consumption
for the relief organization always strictly equals B,
that is,

n
ZLIH—C;;% =B (1)
i=1

In stage 2, after the realization of demand in each
country, the HO observes the additional amount of
relief aid necessary in excess of local supply in each
region. The HO still has to ration the amount of emer-
gency relief g, to the countries that experience
demand exceeding the amount g;. Our model does
not allow transshipment of humanitarian goods that
are already shipped through surface. Transshipment
of goods that are already sent through surface is not
practical for several reasons: (i) Poor transportation
infrastructure between these nations; (ii) regional
autonomy and self-interest (e.g., hesitancy to reduce
stock in home country to satisfy need in a different
country); and (iii) the perishable nature of the human-
itarian goods considered in our study.

The overage cost in our model indirectly involves
the purchasing cost of humanitarian goods, shipping
them via surface transportation, while not being able
to satisfy the needs at other regions. Specifically, if the
HO ships more than the realized demand for a coun-
try through surface transportation, the HO not only
wastes the unit total landed cost of surface shipment
¢, for each unit that exceeds demand but also loses the
opportunity to satisfy demand in a country that lacks
supply of humanitarian goods.

We describe uncertain demand in each region with
D; and its realization with d; fori =1, ..., n. As dis-
cussed in section 1, uncertain demand may be a com-
posite of a base level of uncertain demand (say Dy;)
and an uncertain shock (say D), that is,
D; = Dy; + Dy;. We express the expected demand and
the standard deviation of demand in each region with
wi and o;, respectively. We standardize the surface
transportation quantity g; in order to compare the ser-
vice levels in each region. Let z; denote the standard-
ized stocking factor for each region through surface
transportation where z; = (g; — y;)/ ¢;. From the value
of z;, HO can determine the appropriate service level
through the surface shipment alternative for region i.
We index the regions in the order of increasing uncer-
tainty, that is,

01<0< - <oy,

and we let
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Note that while g; must be nonnegative, z; can take
on negative values. The values of z; cannot be smaller
than —,LL,‘/O'[' (i.e., Z; > —,ui/oi S L]i = Wi + Zi0; > 0) We
express the random demand in region i as
D; = u; + Zio;, where Z; represents the standardized
random error term for region i. The demand for our
motivating example RUTF differs from epidemic dis-
eases that require the transportation of medicine, and
the demand for RUTF in each country can be indepen-
dent of the demand in other regions. Therefore, we
assume that random demand is independent in each
region. This assumption is relaxed in section 5.5
where we examine the impact of correlated demand.
We assume that the pdf for the random demand in
each region has the same functional form, but not nec-
essarily has identical parameter values. Thus, the
pdf of the standardized random error term Z,
denoted ¢(z), is common across regions. The cdf of Z;
is ®(z) with support Q = [z, z,] where y; + z;6; > 0 for
all i (i.e., random demand is nonnegative). We make
no other assumptions regarding the distribution of Z;.

The problem of selecting q to minimize the
expected shortage subject to (1) can be expressed as
follows:

= i=1

i=1

The problem can be rewritten in terms of the stock-
ing factor vector z = (zy, ..., z,):

min {E[S(z,qﬂ)] :Z(,ui+2i6i)+0uqﬂ:3}

22101/t 1) 90 20 -

(2)

where

5(z.44) = (Z (i + Zioi) = (w; + zio1)) " — %)

i=1

= (zn:o'i(zi—zi)+ —%> :

i=1

To eliminate trivial solutions, we consider the two
cases when the budget (i) can cover the sum of the min-
imum demand in each region through surface trans-
portation, and (ii) cannot cover the overall maximum
demand through surface transportation. Thus, we have

n

> (u+z01) <B, (3)

The case of insufficient budget to cover the sum of
minimum demands leads to an intuitive policy of
the HO making investments only in the surface
transportation with no money reserved for the air
shipment alternative. Similarly, the case of excess
budget also leads to an intuitive policy as the maxi-
mum demand in each region can be satisfied
through surface transportation and there would be
no shortages.

4. The Analysis

This section presents the analysis of the problem
setting with an arbitrary number of regions,
denoted 7. The analysis of the model presented in
section 3 is highly complex and it is not possible to
solve for ¢q; for i=1,..., n and ¢, simultaneously
with closed-form expressions. As can be seen from
propositions Al and A2 in the online supplement,
the optimal stocking factors for surface and air ship-
ment decisions cannot be characterized in closed-
form expressions even with independent demand
and equal demand variations.

We begin our analysis by examining the optimal
surface transportation decisions for a given level
of budget reserved for air shipments. The follow-
ing result helps characterize the optimal service
levels using the surface shipment option for a
given amount of relief aid reserved for air trans-
portation g,.

ProrosiTioN 1.

(@) If g, = 0, then

z; = (B—u)/o for all i. (5)
O If g, >0and o1 = 05 = -+ = g, then
z; = (B—u—cqq,)/0 for all i. (6)

(c) Suppose that q, > 0 and ¢; < 641 for some i. If
nonnegativity constraints (; >20,i=1, ..., n) are
nonbinding, then

z7<z;3< - <z (7)

n

Proposition 1(a) states that if there is no relief
aid allocated for air shipment, then it is optimal
for the HO to equalize the shortage probabilities
across regions by assigning equal service levels to
all regions. If the standard deviations are equal
in all n regions, then Proposition 1(b) indicates
that it is optimal to equalize the shortage probabil-
ities net of air deliveries across the regions. When
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regions have unequal amount of uncertainty, how-
ever, Proposition 1(c) shows that the HO would
prioritize the regions with higher demand uncer-
tainty, and assigns a greater service level through
the surface shipment alternative. If g, >0, then
unless some regions receive no surface shipments
in an optimal solution, it is optimal for the relief
organization to transport more (in terms of service
levels) through surface transportation to regions
with greater uncertainty. It is important to high-
light that the above finding in Proposition 1(c) is
robust as it is not restricted to a specific form
of demand uncertainty or a probability density
function.

From Equations (5) and (6) in Proposition 1, it is
easy to see the impact of increasing mean demand
on the optimal service level decisions. Higher
degrees of mean demand (u) lead to a reduction in
the optimal service level decisions for the surface
shipment alternative. Thus, the HO’s reaction to
higher degrees of mean demand is identical to the
reaction it shows to reduced levels of budget (B)
available for the purchase and transportation of
humanitarian goods.

Proposition 1(a) and (b) show that humanitarian
goods will be allocated to each country at equal
service levels. This occurs when there is no budget
reserved for air shipment according to Proposition
1(a), and when there is budget reserved for air
shipment but each country has equal demand
uncertainty according to Proposition 1(b). How-
ever, Proposition 1(c) advocates not serving each
country at equal service levels in order to provide
the maximum coverage and the minimum amount
of expected shortages. Thus, when there is budget
reserved for air shipments (g, >0) and when
countries have varying demand uncertainty
(0; # 0,1 for some i) the HO will not make a
fair allocation to each country; thus z; # z;; for
some i.

What if HO is forced by country governments
and local politicians to provide a fair allocation of
humanitarian goods through surface transportation?
Nair et al. (2017) state that humanitarian organiza-
tions are often governed by fairness and equity con-
siderations because they operate in the social
interest and therefore many times are not solely
cost-driven. Similar observations regarding fair allo-
cation is made in Tzeng et al. (2007), Campbell et al.
(2008), Balcik et al. (2014), and Lien et al. (2014). In
order to examine the impact of fair allocation, let z
denote the fair allocation of humanitarian goods
through surface shipment; each country is served a
quantity based on the equal service level designated
with z;. The problem in (2) becomes equivalent to
solving

()

zp > —max{py /o1, /b, /On } D+ zfo <B

Remark 1. For given g,, HO makes fair allocation
of humanitarian goods through surface shipment
with

z; = (B— u—cqqq)/0 for all i. (8)

It is important to observe that the fair alloca-
tion service level £« in Equation (8) is not identi-
cal to the optimal service level under the
restriction of equal demand uncertainty in Equa-
tion (6). The expression in Equation (8) does not
require equal levels of demand uncertainty in
each country. It is also worth mentioning that the
requirement to serve each country in a fair man-
ner with equal service levels designated with
Equation (8) leads to a suboptimal coverage. The
fair allocation rule in Equation (8) can result in a
higher expected shortage under the following two
conditions: (i) there is budget allocated for air
shipments (i.e., g,>0); and, (i) the degrees of
demand uncertainty are not equal (o; # 0;,; for
some 1).

We extend our derivations using equal demand
uncertainty. We already know from expression (1)
that HO exhausts its entire budget between surface
and air shipment decisions. The consequence of
equal levels of demand uncertainty in an arbitrary
number of regions, along with (1), is that the prob-
lem described in (2) with (n + 1) decision variables
(n decision variables for surface shipment decisions
and one decision variable for the air shipment
decision) reduces to a single-variable optimization
problem.

ReEMARK 2. If 671 = 05 = - = g, then (2) reduces to
the following univariate optimization problem:

nin E[(%izn;(Z,’—z)Jr—B’Z—aw)? _—

. —max;{} B—u
' a/n <z< [

In the remaining part of the analysis, we employ
the assumption ¢ = g, = --- = g,, in order to arrive at
insightful results. We next characterize the shortage
of humanitarian goods, and its excess, using the fol-
lowing two probability sets:
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Q) (z) = {%i (Zi—z)" > (%ﬂ—za) } and

i=1
al(z) - {gi 22 < (Bu_)}

Shortages occur in the probability set Q%(z). Some
countries might experience higher demand than the
surface allocation, that is, Z; > z forsome i =1, ..., n.
When inventory stocked through surface transporta-
tion is insufficient, the shortage can be covered
through air shipments. However, even the inventory
reserved for air shipment can be insufficient to
fulfill these various country needs; this occurs

n
when 237 (Z;—2)" > ((B— u—2z0)/c;). The term

i=1
n
%2% (Z; —z)" corresponds to the total shortage from
1

surface stocking quantities in the absence of air ship-
ment, and the term ((B — u — zo)/c,) is the amount of
inventory reserved for air shipment. In the probability
set Q!(z), the total amount of inventory from surface
and air shipments is sufficient to fulfill all country
needs, and therefore, the HO does not experience any
shortages of humanitarian goods.

We further partition the probability set of shortages
QY(z) into various subsets describing the combination
of regions that cause the shortages. Let C(n, i) repre-
sent the combination of (1, i); the set Q°(z) can be
expressed in a total number of probability subsets

n
equivalent to J =) C(n,i) =2"—1. Let us briefly
i=1
describe how these probability subsets are formed.
When there are two regions to cover (i.e., n = 2), the
probability set Q%(z) can be partitioned into three sub-
sets. In the first subset, the surface level in country 1 is
insufficient to fulfill the demand, while the surface
level in country 2 satisfies its local demand. Moreover,
the inventory reserved for air shipment is insufficient
to fulfill all the needs of country 1. In the second prob-
ability subset, the surface level in country 1 is suffi-
cient to meet the demand, however, the surface
shipment in country 2 does not fulfill the demand and
the inventory reserved for air shipment is insufficient
to cover the shortages in country 2. In the third proba-
bility subset, the inventory from surface shipment in
neither country is sufficient, and the inventory
reserved for air shipment is insufficient to fulfill the
total needs. When the analysis involves three coun-
tries (n = 3), the total number of subsets is | =C
3,1) +C@B2) +CQB3)=3+3+1=7. Thus, as the
number of countries (described with parameter 1) in
the analysis increases, the total number of probability
subsets grows exponentially. We describe the index of

the combination of regions that experience shortage
from surface shipment with j where j = 1,..., J. For a
given combination j, let A*(j) describe the set of coun-
tries where the surface shipment is insufficient to ful-
fill the realized demand, that is, A™(j) = {i: when
Z; > z}. Similarly, let A™(j) describe the set of coun-
tries where the surface shipment is sufficient to fulfill
the demand, that is, A™(j) = {i: when Z; < z}. We use
probability subset Q%(z) in order to describe jth parti-
tion of Q%(z), where

QV(z { lew

Using the above definition, the next proposition
develops the optimal stocking level decisions.

>><<B—#—zo>/ca>}.

ProrosiTioN 2. The optimal stocking factor z* for the
surface shipment decisions satisfies

£l g Bl

P (Yn)dyr. . dyy

(10)

Proposition 2 develops the conditions in which the
optimal stocking factor for the surface shipment mini-
mizes the expected shortage. In this case the optimal
air shipment is equal to q,* = (B — u — z*o)/c,.

Proposition 2 also provides insight into the relation-
ship between the number of regions to cover (de-
scribed with n) and the unit total landed cost of air
shipment (described with ¢,). Recall that we consider
equal levels of demand uncertainty between coun-
tries, and thus, the term (¢/n) is the level of demand
uncertainty in each country. The first-order condition
presented in Equation (10) sums up the variations in
the countries that experience higher realized demand
than the surface inventory, that is, when i € A+(j).
Consider the event that the air shipment is signifi-
cantly more expensive than surface shipment, and c,
is greater than #. In this case, the left-hand side of the
expression in Equation (10) is guaranteed to be nega-
tive, implying that the first-order condition cannot be
satisfied. In this case, HO should increase its surface
shipment and avoid reserving funds (and inventory)
for air shipment. However, when ¢, is less than #, the
first-order condition forces HO to reduce the surface-
level inventory in exchange for inventory reserved for
air shipment. Next, consider the event that the unit
total landed cost of air shipment is as inexpensive as
the surface shipment, that is, ¢, = ¢; = 1. In this case,
the left-hand side of the expression in Equation (10) is
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always positive, and the first-order condition cannot
be satisfied. In this case, HO will minimize the surface
shipment inventory and maximize the inventory
reserved for air shipments. Thus, the expression (10)
hints at the existence of a threshold on the unit total
landed cost for air shipment. As the value of ¢, is clo-
ser to ¢, Proposition 2 recommends reduction in z*,
and as the value of ¢, increases and approaches the
number of regions to cover (described with 1), then
Proposition 2 recommends increasing z*.

The next proposition develops the condition in
which the optimal stocking factor z* that is defined in
Proposition 2 takes an intermediate solution.
ProrosimioN 3. If ¢, > (B — u — z0)/(z;, — z))o, then
z% > zyand q,* < ;" = (B — u — z0)/c,.

Proposition 3 provides condition for the cost of air
shipment in which the optimal stocking factor z*
takes in intermediate solution where the surface
transportation is away from its two support points [z,
z;] and the air shipment amount is less than its poten-
tially maximum value. When the condition in Propo-
sition 3 is not satisfied and ¢, < (B — u — z0)/
(z, — z)o, then the cost of air transportation is exceed-
ingly less costly that the HO uses the entire budget for
air shipments and z* = z,.

We next examine the impact of demand uncertainty
on the probability of shortages and the expected
amount of shortages. In deriving our technical results,
we continue to make use of the derivations involving
the partitioning of the probability set Q°(z) into smal-
ler subsets. The next proposition shows that the prob-
ability of shortages and the expected amount of
shortages increase with higher degrees of demand
uncertainty expressed with greater values of .

ProrosiTION 4.  For any given z, both the probability of
shortages described by P[Q°(z)] and the expected amount
of shortages are non-decreasing in ¢ when B > p.

The above proposition shows that demand uncer-
tainty expressed with parameter ¢ expands the fea-
sibility of the probability set Q°(z) when B > u. To
understand the impact of demand variation, let us
describe a problem setting where the HO has to
cover demand in two countries. For a given value
of z representing the stocking factor for surface
inventory, there are three possible probability
regions where shortages can be experienced. In the
first probability subset, the realization of random
standardized demand in country 1 (denoted z;)
exceeds the surface inventory z and the inventory
reserved for air shipments (denoted g,), while the
realized standardized demand in country 2 is below
the surface inventory z. Thus, all shortages arrive

from the needs in country 1. As the level of
demand uncertainty increases, the mass falling in
this region of probability subset is non-decreasing,
leading to a potential increase in probability, and
therefore, to an increase in expected shortage. In
the second probability subset, realized standardized
demand in country 2 (denoted z,) exceeds the sum
of surface inventory z and the inventory reserved
for air shipments, while the realized standardized
demand in country 1 is less than the surface inven-
tory z. In this subset, all shortages arise from the
excess demand in country 2. As the level of
demand uncertainty increases, the mass falling in
this region of probability subset is non-decreasing.
Therefore, the probability of shortages and the
expected amount of shortages increase in this sub-
set. The third subset involves the events when the
realized standardized demand in each country is
greater than the surface-level inventory and the
sum of the realized demand exceeds the sum of the
surface-level and air shipment inventories. Increas-
ing levels of demand uncertainty often lead to an
increase in this region as well;, however, when the
uncertainty decreases the mass in this probability
region, the movement in the mass is captured in
the other two probability subsets. Therefore, the
overall probability increases with higher degrees of
demand uncertainty, leading to an increased
amount of expected shortages. The result in Propo-
sition 4 is general as it is derived for an arbitrary
number of regions. In sum, we conclude that higher
values of ¢ imply a higher expected shortage for
humanitarian goods. Moreover, higher degrees of
demand uncertainty lead to a greater amount of
expected shortages.

When the budget is less than the total mean
demand, that is, B < p, the probability of shortages
described by P[Q%(z)] and the expected amount of
shortages can exhibit both an increasing or decreasing
behavior in . When B < p, the HO has limited budget
and it cannot cover the total mean demand via surface
shipment. Thus, the overall service level is negative
(i.e., less than the mean). Increasing degrees of o
implies that the tails of the pdf for Z; are further
expanded; this implies that there is a bigger probabil-
ity of smaller values of demand in each region. The
left tail expansion of the demand pdf can result in an
increase in the probability of demand values that are
less than the stocking factor z. As a result, when
B < pu, the probability of shortages and the expected
amount of shortages can decrease with increasing val-
ues of 0.

We next examine the impact of demand uncer-
tainty on the optimal stocking factor decisions. The
following lemma shows that the amount of inventory
reserved for air shipment can be both increasing
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and decreasing with higher degrees of demand
uncertainty.
Lemma 1. For a given z < 0 (>0), 09,/05 > 0 (<0).

The above lemma indicates that the behavior of
the inventory reserved for air shipment is deter-
mined by the sign of the surface-level stocking
factor z. Specifically, if the stocking factor for the
surface shipment option is negative, implying that
the HO stocks less than the mean demand in each
country (i.e, g; < u;), then increasing degrees of
demand uncertainty lead to a higher level of
inventory reserved for air shipment. It is impor-
tant to observe from the budget equation in (2),
the funds allocated for air shipment is competing
with those allocated for surface shipment. Thus,
an increase in air shipment has to cause a reduc-
tion in surface shipments. In this case, demand
uncertainty amplifies the importance of air ship-
ment and its benefits from the flexibility to serve
the potentially increasing needs in each country.
On the other hand, a positive value of z in the
optimal solution implies that the cost of surface
shipment is significantly lower than the cost of air
shipment. When z > 0, the optimal surface quan-
tity exceeds the mean demand, that is, g; > p;.
Because increasing degrees of demand uncertainty
does not alter the cost parameters for the two
shipment options, the revised optimal solution
(under a higher degree of demand uncertainty)
continues to rely on the same cost differentials
and shipment preferences, leading to an increased
amount of surface shipment by cutting funds from
air shipment.

As established earlier in Equation (1), the HO
would be exhausting its entire budget between sur-
face-level inventory and the inventory reserved for air
shipments. Using this observation, the next lemma
shows that the impact of increasing degrees of
demand uncertainty on the inventory transported
through surface shipment is the opposite of the
impact developed for the inventory reserved for air
shipment.
Lemma 2. If 09,/06 > 0 (<0), then 0z/0c < 0 (>0).

The consequence of Lemmas 1 and 2 is that
higher degrees of demand uncertainty lead to
either an increase in air shipment with a reduction
in inventory that moves with surface shipment, or
a decrease in air shipment with a higher reliance
on the inventory stocked with surface shipment.
The next proposition shows that it is sufficient to
obtain the optimal stocking factor for surface ship-
ment in order to determine which of the behavior

will be the prevailing reaction to increasing degrees
of demand uncertainty.

ProrosiTioN 5. When  z* > 0 (<0), air shipment
decreases (increases) in o, while the stocking factor for
surface shipment increases (decreases) in o.

Proposition 5 shows that demand uncertainty
plays a significant role in the allocation of funds
between surface and air shipments. The reaction of
the humanitarian organization to higher degrees of
demand uncertainty can be determined by the opti-
mal level of inventory purchased for surface ship-
ment. If the optimal inventory for surface shipment
is less (greater) than the mean demand, then we
show that increasing degrees of demand uncer-
tainty leads to increasing (decreasing) reliance on
the air shipment option with greater (smaller) levels
of inventory reserved for air transportation and
decreasing (increasing) levels of inventory reserved
for surface shipment.

It is important to highlight that, for an arbitrary
number of regions to serve, the optimal stocking
levels through surface transportation and the optimal
quantity for air shipments cannot be characterized in
closed-form expressions. Overall, our model with the
objective function of minimizing expected shortages
is not tractable under an arbitrary number of regions
to serve. In the next section, we provide additional
insight regarding the impact of various parameters on
the optimal surface and air shipment quantities
through the analysis of a two-country setting.

5. Impact of Parameters

This section presents numerical analysis using data
from UNICEF and other publications in order to pro-
vide answers to the following three questions:

1. How do various factors, including the differ-
ence in the unit total landed cost of each
transportation mode, the amount of budget,
the level of demand uncertainty, and the cor-
relation between the demands of various
regions, and the number of regions to serve
impact the effectiveness of the humanitarian
operations?

2. How should budget be allocated based on the
change in each of the above factors?

3. What are the types of effort that could further
improve the effectiveness of the humanitarian
supply chain operations?

We use the following data provided by UNICEF
and Komrska et al. (2013), while constructing a base

case for the RUTF supply chain in serving the Horn of
Africa:
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e Number of regions: We consider that HO serves
two regions, that is, n = 2: Niger (i = 1) and
Ethiopia (i = 2). These two regions represent
the countries with the greatest needs for RUTF.

e Unit total landed cost of surface and air transporta-
tion modes: The unit total landed cost combines
the purchasing cost with the unit transporta-
tion cost. For the procurement cost of RUTF,
we use the price provided by Nutriset, the lar-
gest supplier for RUTF. The unit procurement
cost is approximately equal to $45/carton.” We
use a surface transportation cost of $5/carton
indicating the freight cost via sea shipment
from France, where Nutriset is located, to the
Horn of Africa. This indicates that the unit
total landed cost for the surface transportation
mode is ¢, = $50/carton. We use a unit air
transportation cost of $35/carton indicating the
cost of air shipment. As a consequence, the
unit total landed cost for the air transportation
mode is ¢, = $80/carton.

e Demand: We consider uniform annual demand
on the basis of the principle of insufficient rea-
son originally proposed by Pierre Laplace in
the 1700s (Luce and Raiffa 1957).> Thus, we
assume that D; = U ~ [0, 273] and
D, = U ~ [0, 342]. The demand for RUTF in
Niger and Ethiopia varies quite significantly.
The supports for each region is derived from
the UNICEF's actual order amount (in ‘000 car-
tons) of RUTF for each region from 2005 and
2010 (see the Appendix S1 for details).* (Note:
while, to simplify notation, we define demand
in our model in terms of currency units (e.g.,
uncertain Niger demand in currency units is
uniform between $50 x 0 and $50 x 273), we
define demand in units of product instead of
units of currency in this example to clarify the
elements underlying demand.) For the base
case, we assume that there is no correlation
between the demands in each country.

e Budget: In 2012, UNICEF allocated a total of
$88.3 million from its Programme Division
funds to the Country Offices in Niger and Ethio-
pia ($30 million and $58.3 million, respectively).
However, the exact budget allocated for RUTF
is not reported. We assume that 14% of the
entire budget is allocated to RUTF, which is the
proportion that UNICEF allocated to nutritional
humanitarian goods in 2015. Thus, we use
B = $12.5 million (>14% x $88.3 million) for
the base case which is slightly greater than 14%
of the sum of Niger and Ethiopia’s total budget.

We next examine the impact of the value of relative
differences in the unit total landed costs, budget, and

demand distribution parameters, both from an uncer-
tainty perspective and the correlation between the
demands of each region. We then extend the analysis
to a higher number of regions.

5.1. Impact of the Difference in the Unit Total
Landed Costs

We first examine the impact of the unit total landed
cost (i.e., the sum of the unit costs of purchasing and
transportation) for the surface and air shipment alter-
natives. In our analysis, we keep the sea freight rate
constant at f; = $5/carton and vary only the air
freight cost f, between $15 and $55 per carton, that is,
t, = {15,25, 35,45, 55}. This enables us to examine the
impact of the difference between the unit total landed
costs of the surface and air transportation modes. As
a consequence of the above unit transportation costs,
we have the unit total landed costs for the surface and
air shipment alternatives as c; = $50/carton and
¢, = {60, 70, 80, 90, 100} in this numerical analysis.

The relative unit cost difference between air and
surface transportation plays an important role on
how heavily the relief organization relies on the sur-
face and air transportation alternatives. The results
are presented in Table 1 where E[S*] is the expected
shortages at the optimal stocking levels.

Table 1 shows that the expected shortage
decreases as the air transportation option becomes
economical. As air shipment becomes less costly, HO
utilizes the air shipment alternative more frequently,
and the relief organization becomes more agile and
responsive (e.g., ¢, = $60 and $70). However, the
benefits of air transportation is limited with increas-
ing air shipment costs. There exists a threshold of
the unit total landed cost, air shipment is perceived
to be overly expensive and is not utilized (e.g.,
¢, = $80, $90, and $100). For the base case (c, = $80),
we find that it is optimal for UNICEF to not utilize
air transportation, which corresponds to not allocat-
ing any funds for EPF, due to the following two rea-
sons: (i) relatively expensive air shipment cost, and
(ii) insufficient amount of budget. The budget of
$12.5 million allocated to RUTF for both countries is
not sufficient to even cover the sum of mean

Table 1 Effect of Various Sea Transportation Costs on the Optimal

Values
¢, $60 s70  INGEIIN  s00 $100
f5] 103941 108310 108313 108,313
P 74 2 0 0
g 161.2 247.2 250.0 250.0
7 087 034 032 032
o 079 —034 032 032

Note: Highlighted column in tables represent the base case for the
computational study.
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demands, iy + up = 307.5, through surface transpor-
tation (i.e., 307,500 x $50 = $15.375 million). Thus,
even if all RUTF are distributed through the cheaper
surface shipments, the expected shortage of RUTF is
extremely high. We find that the expensive but flex-
ible air transportation mode only becomes valuable
when an HO has sufficient amount of budget.

Note that the discrepancy between the surface ship-
ment amounts dedicated to Niger and Ethiopia
(equivalently, service levels between these two
regions) becomes greater as more supplies are
reserved for air transportation. Consistent with our
finding in Proposition 1(a), this difference completely
disappears when the air transportation option
becomes expensive and is abandoned from the opti-
mal allocation of budget.

5.2. Impact of Budget

We next examine the impact of the available budget
on the optimal stocking decisions, and the expected
shortage. Table 2 shows how critical it is for HOs to
secure greater amounts of budget in order to mini-
mize the shortages of supply in regions of need.

It is common to observe HOs relentlessly working
to secure a sufficient amount of budget. Table 2
demonstrates how significantly budget affects the
expected shortage. Through our numerical analysis,
we find that if the budget is increased by 60% (i.e.,
$7.5 million is added to the total budget) for RUTF,
then the expected shortage could be reduced by 65%.
Again, we observe that it makes sense to reserve
funds for EPF, which corresponds to rapid onset
emergencies, only when UNICEF can allocate ade-
quate amount of budget to each UNICEF Country
Office.

Donations are not always provided in cash to an
HO. Corporations and government agencies often
donate to HOs by providing funds in the form of
charter flights for shipments. To gain insights on
the impact of charter flights, we answer the follow-
ing question: If an additional fund of $7.5 million
were provided in the form of charter flights for
RUTF shipments as opposed to cash, how would
this affect the expected shortage? From Table 2, we
know that an addition budget of $7.5 million in the
form of cash would reduce the expected shortage

Table 2 Effect of Various Amount of Budgets on the Optimal Values

by 65%. An additional budget of $7.5 million in the
form of charter flights is equivalent to shipping
93,750 cartons of RUTF through air transportation
which would reduce the expected shortage by 60%.
This shows that donations in the form of charter
flights are quite effective but not as effective as
providing additional funds with cash because the
HO cannot use the additional funds in the most
effective manner, which also explains why ear-
marked donations have limited benefits. Table 2
also shows that increasing the total budget has
diminishing returns in the reduction observed in
the expected shortages. Each increment of
$2.5 million from the base case of $12.5 million
brings a smaller reduction in the expected amount
of shortages.

5.3. Impact of the Degree of Distortion in

Demand Uncertainty

In this subsection, we examine the impact of the dis-
tortions in demand uncertainty between two coun-
tries. It is rather straightforward to see that an
increase in demand uncertainty causes an increase in
shortages. This is because higher variation in demand
leads to a greater chance of a mismatch between sup-
ply and demand. In this case, HO would prefer to uti-
lize air transportation over surface movement of
humanitarian goods.

While the negative consequences of increasing
demand uncertainty is obvious, it is not that clear
how the degree of distortion in demand uncertainty,
denoted 9, affects the performance of an HO under a
constant total variation. In order to examine the
impact of the distortion in demand uncertainty, we
keep the sum of the demand variances constant,
that is, 05(c3+03) =062 Let 6>0 where
0 =022 — 6% =35> — g7 given that ¢3>07). To gain
more insightful results from the base case, we
increase the budget to B = $20 million while keeping
other parameters the same, so that we can observe
how the air transportation funds change with regard
to distortion in demand variance. Moreover, in order
to demonstrate the impact of increasing demand
variation, we reduce the two regional demand distri-
butions by 20%; thus, D; =U ~[27, 246] and
D, = U ~ [34, 308] in the base case.

B $10,000,000 © $12500000 $15,000,000 $17,500,000 $20,000,000
E[S*] 140,020 80.670 57,094 37,487
% change in E[S*] 29% —26% —47% —65%
0.+ 0 0 0 11

T 200.0 300.0 350 382.4
7% —0.61 ~0.04 0.24 0.41

2% —0.61 ~0.04 0.24 0.43
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We begin our analysis with 6 = 0 which represents
the case with the amount of distortion where varia-
tion in each country are equal. We increase the degree
of distortion to ¢ = 4620 representin% the case with
the maximum amount of distortion.” Table 3 tabu-
lates the results pertaining to the impact of the
increasing degrees of distortion in demand variation.

One would intuit that increasing levels of distortion
in demand variance would lead to an increase in the
amount of expected shortages. However, Table 3
demonstrates that the expected amount of shortages
decreases along with the necessity for air shipment as
the degree of distortion in demand variance increases.
The rationale behind this rather surprising result
becomes clearer when we examine the case with the
highest degree of distortion in demand variance cor-
responding to 6 = 4620. In this case, the demand
uncertainty in D; is minimized while the demand
uncertainty is maximized in D,. Comparing to other
scenarios with less amount of distortion in demand
variance, we find that the air transportation option is
used least. This is because the value of the flexible
(but expensive) air transportation mode decreases as
the demand in one country becomes more determinis-
tic. Thus, with the need for the expensive air trans-
portation mode decreasing, the expected shortage
diminishes as the HO can acquire and ship greater
amounts of RUTF.

Consistent with our finding in Proposition 1(b),
when the demand variances are equal in different
countries corresponding to the scenario where ¢ = 0,
we can observe that the optimal stocking factor for
surface shipments are identical with high service
levels, z;* = z,* = 0.48.

Table 3 provides insight regarding how HOs
should allocate resources and efforts in forecasting
the needs in each region. One would expect that
equally dividing the efforts to improve demand accu-
racy by reducing the uncertainty in demand would
return the highest benefits. However, the results in
Table 3 indicate that an HO should allocate all
resources to reduce demand uncertainty, when possi-
ble, in one region. This action would reduce the need
to rely on the more expensive air shipment option,
and enables HO to utilize the cheaper surface

shipment alternative. This can be seen from the com-
parison of the expected shortages under the two
extreme distortion scenarios with ¢ = 4620 and ¢ = 0:
The expected amount of shortages decrease approxi-
mately by 33% at the maximum degree of distortion
in demand variation.

5.4. Impact of Number of Countries to Serve

We next examine the impact of the number of coun-
tries a relief organization has to serve. We increase
the number of countries to be served from two
countries to six countries, that is, n = {2, 3, 4, 5, 6}.
In order to solely focus on the impact of the num-
ber of countries to serve, we standardize the
demand for each country where the demand for
each country follows an independent and identical
uniform distribution as D; = U ~ [50, 150]. We allot
$5 million for each country so that the budget
would be sufficient to transport the mean demand
(ui =100) through surface transportation (.e.,
100,000 x $50 = $5 million). All other parameters
follow the base case scenario as described earlier.
The results are tabulated in Table 4.

Table 4 shows that HO can significantly reduce the
amount of expected shortages when serving more
countries with the proviso that the budget increases
linearly with the total expected demand. The intuition
behind the reduction in the amount of expected short-
ages stems from the fact that the aggregated level of
demand uncertainty decreases due to the “law of
large numbers.” Even if the demand in each country
follows a unique distribution, the aggregated total
demand would centralize around the mean and
resemble a Normal distribution and its properties.
This observation leads to smaller expected amount of
shortages. This scenario also demonstrates that effi-
ciency can be vastly improved by coordinating vari-
ous relief organizations with similar missions while
integrating their available funds to act as if there is a
single organization budget.

Table 4 illuminates a surprising insight regarding
the optimal allocation of budget to air transportation
with a higher number of countries to serve. The opti-
mal amount of humanitarian goods acquired for
air transportation shows a non-monotonic behavior

Table 3 Effect of Degree of Distortion in Demand Variance on the Optimal Values

0 0 1130 2260 3390 4620

Dy U[13, 260] U[27, 246] U[44, 229] u[64, 209] u[9s, 175]
D, U[47, 295] U[34, 308] u[22, 320] u[t, 331] u[o, 342]
£5%] 24,176 23,853 22,802 20,768 16,261
qz* 14.7 14.6 14.3 13.5 10.4
g 376.5 376.4 377 378.4 383
7* 0.48 0.47 0.46 0.44 0.42
2* 0.48 0.50 0.53 0.57 0.67
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Table 4 Effect of Number of Regions to Serve on the Optimal Values

n 2 3 4 5 6

B $10,000,000 $15,000,000 $20,000,000 $25,000,000 $30,000,000
£5%] 25,000 7047 5050 3513 2289
q:* 0 27.8 24.1 171 8.0

a7 100 85.2 93.98 96.58 98.67

z* 0.00 —0.51 -0.21 -0.12 —0.05

where it first increases then continues to decrease
with respect to the number of countries to serve. This
is because there are two opposing factors that conflict
as the number of countries increase. As the number of
countries that the HO needs to support increases, the
value of flexibility that the air shipment option pro-
vides increases, which favors allocating more budget
to air transportation. On the other hand, as the num-
ber of countries to serve increases, the aggregate
demand becomes more centralized around the
expected total demand, featuring a smaller overall
variation to benefit from air shipments, which works
against allocating more budget to air transportation.
Due to these two opposing forces, we observe a non-
monotonic behavior pertaining to the reserved budget
for air transportation as the number of countries
increases.

5.5. Impact of Correlation

Our preceding analysis has considered independent
demand distributions. We next examine the effect of
correlation between the demands in the two regions.
While our work is motivated by the purchase and dis-
tribution of RUTF, it can also be used for other
humanitarian goods (e.g. medicine) for other epi-
demic diseases. In such disasters, the demand in some
regions (e.g. in close proximity) can be positively cor-
related. Let p represent the correlation parameter
where 0 < p < 1. Note that the shape of the ellipse
changes with the degree of correlation. We consider a
bivariate normal distribution for the joint probability
density function f(dy, d>) of the two regions:

1
d1,da|p) = ———————ex
fld,da|p) SR p
(o)’ _ 2pldim)da=r) | (o)’ (11)
- 12 0102 052
2(1=p?)

For Equation (11), the mean demand for both coun-
try equals to 100 (i.e., u; = pp = 100) and the standard
deviation for both country equals to 50 (Q.e.,
o1 = g2 = 50). The transportation costs for each mode
is equal to the base case. To gain more insightful
results regarding how the budget reserved for air
transportation changes with respect to correlation, we
consider a budget that is sufficient, B = $12.5 million,

so that the HO reserves budget for air transportation
when there is no correlation between demands (.e.,
p =0).

Table 5 shows that positive correlation regarding
the demand in each region has an adverse impact on
minimizing expected shortages. This implies the fact
that having no correlation serves as the best-case sce-
nario for an HO. When there is no demand correlation
between regions (i.e.,, p = 0), it is optimal for the HO
to reserve budget for air transportation in the case of
rapid onset emergencies. However, our numerical
analysis shows that when p > 0.5, it is optimal to not
reserve any budget for air shipments and distribute
the entire budget to each Country Office for RUTF to
be shipped by surface transportation. We can also
observe that the optimal stocking factor for both
regions are equal regardless of the correlation. This is
because both regions have equal amount of demand
uncertainty.

The result regarding the impact of correlation on
minimizing expected shortages is certainly notewor-
thy because the result is not quite intuitive. We can
better understand why positive correlation has an
adverse impact on minimizing expected shortages by
focusing on the air shipment budget. If the demands
in both regions are perfectly positively correlated
(p = 1), there is no value to be gained from the flexible
air transportation mode because you either have high
or low demand realization in both regions. Under this
scenario, it is similar to restricting the HO to operate
with only one shipment option. However, if there is
no correlation between the demands in each region,
there is value to the flexible air transportation mode
given that the HO has sufficient budget and the air
shipment is not excessively costly. Under this scenar-
io, the HO can freely choose between two different
shipment modes as opposed to be restricted to only
utilize surface transportation. This numerical result

Table 5 Effect of Correlation on the Optimal Values

p 0 0.25 0.5 0.75 1
AS*] 20,834 21,316 21,399 21,399 21,399
a0t 19.3 7.3 0 0 0

g 219.1 238.2 250.0 250.0 250.0
z* 0.19 0.38 0.50 0.50 0.50
Z* 0.19 0.38 0.50 0.50 0.50
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sheds light onto how HOs should allocate its budget
regarding how much demand correlation there is
among the regions of interest. If there is a great
amount of correlation between demands, it is better to
reserve less for emergency funds. On the other hand,
if there is not much correlation, it is better to reserve
more for emergency funds.

6. Potential Extensions

In this section, we present several potential extensions
that are not incorporated into the model presented in
section 3. The model in section 3 assumes that the
ratio of landed-cost-via-air to landed-cost-via-surface
is the same across regions. We begin our discussion in
this section by relaxing the assumption of having
equal air-to-surface cost ratios for different regions.
Through numerical illustrations, we demonstrate the
impact of featuring differing costs in surface and air
shipment options to the countries of service. Our
model in section 3 ignores the impact of uncertainty
that can be influencing the surface transportation
option. We then provide a discussion regarding the
impact of lead-time uncertainty in surface transporta-
tion on the optimal stocking levels for the surface and
air shipment options.

6.1. Impact of Different Transportation Costs

To examine the impact of different surface and air
transportation costs for different countries, we com-
pare the optimal values of the base case we developed
in section 5 (i.e., the highlighted columns in Table 1,
2, and 3) with the optimal values obtained by only
modifying transportation costs. The following are the
parameters we use for the base case: (i) total landed
cost of surface transportation for both regions is
Cs1 = Cp = €, = $50; (i) total landed cost of air trans-
portation for both regions is c,; = ¢z = ¢, = $80; (iii)
random demand in each region follows a Uniform
Distribution with D; = U ~ [0, 273] and D, = U ~ [0,
342]; and, (iv) total budget is B = $12.5 million.

To better understand the impact of different trans-
portation costs, we analyze three different numerical
examples that illustrate the reactions in the expected
shortages and on the optimal stocking decisions for
the surface and shipment decisions. Example 1 shows
the impact of varying air shipment costs. Example 2
highlights the influence of varying surface transporta-
tion costs. Example 3 combines the impact of varying
unit shipping costs both in surface and air shipment
options. In each example, we increase and decrease
the cost parameters by 20% from their base values.

ExamPLE 1. We examine the case where both
regions have equal total landed cost of surface trans-
portation (c; = $50), but different total landed cost of

air transportation. We keep the total landed cost of
air transportation in region 1 constant at c,; = $80,
and increase/decrease the total landed cost of air
transportation in region 2 by 20%, that is, c,o = {$64,
$80, $96}. The following table shows the impact of
varying air shipment cost on the expected amount
of shortages E[S*], amount of humanitarian goods
reserved for air shipment g,* and optimal stocking
factors z;* and z,* for the surface shipment option.

Table 6 shows that it is optimal to utilize only sur-
face transportation and abandon the air shipment
option regardless of the different total landed cost of
air transportation in region 2, c,» = {$64, $80, $96}.
We can also observe from Table 6 that it is optimal to
have equal service levels for both regions which is
consistent with our finding in Proposition 1(a). As
mentioned in section 5.1, the reason why all optimal
solutions are identical can be explained in two parts:
(i) relatively expensive air shipment cost even when
Ca2 = $64, and (ii) insufficient amount of budget. The
budget of $12.5 million allocated to RUTF for both
countries is not sufficient to even cover the sum of
mean demands, and as a result the expected shortage
of RUTF is extremely high.

ExamPLE 2. We examine the case where both
regions have equal total landed cost of air trans-
portation (c, = $80), but different total landed cost of
surface transportation. We keep the total landed cost
of surface transportation in region 1 constant at
cs1 = $50, and increase/decrease the total landed
cost of surface transportation in region 2 by 20%,
that is, ¢, = {$40, $50, $60}. The following table
shows the impact of varying surface shipment cost
on the expected amount of shortages E[S*], amount
of humanitarian goods reserved for air shipment
9.*, and optimal stocking factors z;* and z,* for the
surface shipment option.

Table 7 illustrates the impact of the unit total
landed cost for surface shipment on the optimal deci-
sions and the expected amount of shortages. It should
be immediately recognized in Example 2 that it is
optimal to not reserve any budget for air transporta-
tion in all three cases. However, the optimal stocking
factor decisions are influenced for the surface ship-
ment option. Comparing the base case (where
¢ = $50) with the case where ¢y, = $40, we observe

Table 6 Optimal Values for Example 1

Cs Cat Cap E[ S *] qa* Z * ZZ*
$50 $80 $64 108,313 0 —0.32 —0.32
$96 108,313 0 -0.32 -0.32
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that if the surface transportation cost is lower in
region 2, the HO increases the stocking factor exten-
sively in region 2 (where z,* increases from —0.32 to
0.06) with a slight decrease in the stocking factor for
region 1 (where z* increases from —0.32 to —0.36).
One might wonder why the HO decreases its stocking
factor for the surface shipment to country 1 when
there is no change in the unit cost of the either trans-
portation options to country 1. The reduction in the
unit cost of the surface shipment to country 2 is simi-
lar to extending the budget for the HO. The savings
from the surface cost (when cy, = $40 instead of
cs2 = $50) is rationed as surface inventory between the
two countries in order to maximize the coverage and
minimize the expected shortage of humanitarian
goods. Comparing the base case (where ¢, = $50)
with the case where c,, = $60, we observe a similar
phenomenon. The increasing surface shipment cost to
country 2 can be perceived as reducing the budget. In
this case, the HO significantly reduces the stocking
factor for the surface shipment alternative to country
2 by decreasing z* from —0.32 to —0.62. From this
significant reduction for surface inventory assigned to
country 2, the HO elevates its inventory allocation to
the surface shipment alternative in country 1 by
increasing z;* from —0.32 to —0.23. The increase in
the stocking factor for country 1 is because the trans-
portation cost becomes relatively cheaper for region 1
when ¢, = $60. As a result, we conclude that the opti-
mal stocking factor decisions do not exhibit a mono-
tone behavior under unequal surface shipment costs.

ExamrLE 3. We examine the case where both
regions have different total landed cost of surface
and air transportation. We keep the total landed cost
of surface and air transportation in region 1 constant
at cs1 = $50 and c,; = $80, respectively. We vary the
total landed cost of surface and air transportation
options in region 2 by 20%, that is, ¢, = {$40, $50,
$60} and c,p = {$64, $80, $96}. The following table
shows the impact of varying surface and air ship-
ment costs on the expected amount of shortages
E[S*], amount of humanitarian goods reserved for
air shipment g,*, and optimal stocking factors z;*
and z,* for the surface shipment option.

Table 8 shows that when both surface and air ship-

ment costs to one country decreases, both countries
obtain a higher stocking factor for the surface

Table 7 Optimal Values for Example 2

shipment alternative. Comparing the base case
(where ¢y, = $50 and ¢, = $80) to the case where
¢ = $40 and c,, = $64, we make two observations.
First, it is optimal to not reserve any budget for air
transportation (i.e., g,* = 0); this is because c,, = $64
and ¢, = $80 are both exceedingly expensive so that
the HO abandons the air transportation option in both
cases, and therefore, the different costs do not affect
the optimal solution. Second, the optimal values for
the stocking factor decisions expressed with z;* and
z,* are identical to the optimal decisions obtained
under the case where ¢, = $40 in Table 7. We again
observe a similar effect as if the HO has an increased
budget, and thus, both z;* and z>* increase from the
savings created from the less expensivesurface ship-
ment option. An interesting result is obtained by
increasing both of the shipment costs to country 2.
Comparing the base case (where c, =$50 and
c,o = $80) to the case where ¢y, = $60 and c,, = $96,
we observe that it is optimal to reserve a portion of
the budget for air transportation, that is, g,* = 20. This
is because now c,; = $80 becomes relatively cheaper
when cs = $60. In this setting, the HO reduces its
stocking factor for both countries with a significant
reduction in the now more expensive country 2: z;*
decreases from —0.32 to —0.35 and z,* decreases from
—0.32 to —0.81. Thus, increasing both cost terms to a
specific country leads to an increased level of reliance
on air shipments with reduced surface inventory
shipments.

6.2. Impact of Random Lead-time for

Surface Transportation

We next discuss how our results would change if
we were to incorporate random lead-time into the
surface transportation of humanitarian goods into
our model. Swaminathan et al. (2009) explain that
the sea-based surface transportation of humanitarian
goods shows a wide range of lead-times mainly
because of the delays at the ports of departure,
transshipment, and arrival. Congestion at the port is
the most common reason for a delay. Other reasons
that can cause a delay in surface transportation
include issues regarding regulatory paperwork
when crossing borders, port strikes, violence due
to political reasons, and blocked roads due to
either natural or man-made disasters. The lead time
for air shipments is significantly more stable
when compared to surface transportation. The

Table 8 Optimal Values for Example 3

Ca Cs1 Cs2 E[ S*] Qa* Z * ZZ*

$80 $50 $40 89,424 0 —0.36 0.06

$60 122,691 0 -0.23 —0.62

Cst Cat Cs2 Ca F[5*] qa* 7* Z*
$50  $80  $40  $64 89,424 0 —0.36 0.06
$60  $96 122221 20 —035  —0.81
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aforementioned factors causing delays in surface
shipments can be avoided through air shipments.

If there is a greater amount of uncertainty regarding
the lead-time for distributing humanitarian goods
only for surface transportation, this would favor
reserving a greater amount of budget for the air ship-
ment option while reducing the budget allotment for
the surface shipment alternative to all countries. Thus,
incorporating randomness in the lead-time of the sur-
face shipment alternative into the model would make
our results associated with the air shipment alterna-
tive more pronounced. As a result, we conclude that
incorporating lead-time uncertainty into our model
would result in recommending humanitarian organi-
zations to reserve a higher level of funds for air
shipment.

6.3. Competition between Countries for
Humanitarian Goods

We next elaborate on each local country government’s
desire to influence the HO'’s allocation of budget to
assign a higher amount of money and inventory for
surface shipment; we do not expect local governments
to advocate for a higher fund allocation for air ship-
ment. Recall that UNICEF's Programme Division
funds are used for the purchase and shipment of sur-
face inventory to each country. UNICEF's Programme
Division funds are allocated between each country’s
local UNICEF offices. The model presented in sec-
tion 3 with the objective function described with (2)
determines the level of funds that will be rationed to
each country without giving any preference to any
country government’s pressure. This model leads to
the optimal choice of z;* that determines the amount
of money to be allotted to UNICEF’s local country
offices. These vector values z* = (1%, ..., z,%), along
with the optimal value of g,*, minimize the total
expected shortage of humanitarian goods. We denote
the minimum expected shortage by E[S*] where E
[S*] = EIS (z*, q.%)].

Let us next consider the case when the local country
government pressures the HO (e.g., UNICEF) to allot
a higher amount of money for the purchase and ship-
ment of humanitarian goods that will be stocked in
local country offices through surface shipment. In this
case, the model in (2) would be supplemented with
each country’s local government desire of

max z; (12)
s.t.
—1;/0i <z < p + 2,6 (13)

Note that Equations (12) and (13) will be replicated
for each country i = 1, ..., n. Let 2= (Z;...,2,)
denote the optimal solution vector representing the

service level of surface shipment in (2) supple-
mented with Equations (12) and (13) with, 4, repre-

sent the air shipment, and E {3} as and the expected
amount of shortages where E[.@} =E[S(2,4,)]. 1t is

easy to verify that E {S] > E[S"].

We conclude that the pressure that can be applied
from local country governments to increase the fund-
ing for the purchase and surface shipment to one
country can result in a higher expected shortage of
humanitarian goods. Moreover, because increasing
the surface shipment funds to one country requires
the reduction from another country’s funds for sur-
face shipment and/or the funds for the air shipment,
the HO has to determine the optimal fund allocation
by ignoring the pressures from local country govern-
ments expressed in Equations (12) and (13). In sum,
we recommend the HO to ignore local government
considerations that are described in Equations (12)
and (13) in order to attain the minimum expected
shortage with the limited budget.

7. Conclusions and Summary of
Lessons for Managers

The complexities that humanitarian organizations
face in order to coordinate their aid-related supply
chains tend to be more challenging compared to con-
ventional operations management. Humanitarian
supply chains operate under insufficient amount of
information and limited budget. In this study, we
examine the problem of delivering limited amount of
perishable relief aid through two kinds of transporta-
tion modes, surface and air shipments, to regions of
need in the presence of demand uncertainty.

Our study makes four main conclusions. First, we
find that in the presence of reserved funds for air
transportation, it is optimal to target a higher service
level through surface shipments to regions with
greater demand uncertainty. In contrast, if the air
freight cost is excessively costly and when the relief
organization abandons this transportation option, it is
optimal to provide equal service levels through sur-
face shipments despite the differences in uncertainty
in demand.

Second, we show that uncertainty in the demand
for humanitarian goods plays an important role in the
optimal allocation of resources and funds. Increasing
the accuracy of forecasts, yielding a smaller degree of
uncertainty can be significantly beneficial in reducing
the expected amount of shortages. Our work shows
the impact of demand uncertainty on the optimal
stocking decisions for the surface and air shipment
alternatives. We show that the HO’s reaction to higher
degrees of demand uncertainty depends on the
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optimal service level describing the level of inventory
purchased for surface shipment. If the optimal service
level for surface shipment is negative (implying that
the inventory for surface shipment is less than the
mean demand), then we prove that the HO relies more
on the air shipment option and decreases its service
level for the surface shipment alternative. However, if
the optimal service level for surface shipment is posi-
tive (implying that the inventory for surface shipment
is greater than the mean demand), then the HO
reduces its reliance on the air shipment and increases
its service level for the surface shipment option.

Third, our analysis shows that an HO should focus
its resources and efforts to reduce uncertainty in one
region as opposed to evenly allocating resources to
reduce uncertainty in all regions. This action not only
enables HO to service the region with known or deter-
ministic demand with the surface transportation alter-
native, but also reduces the need for air shipments by
serving the stochastic demand region by allocating a
higher number of goods through surface transporta-
tion. We also find that there is great potential to
reduce expected shortages by integrating distribution
operations along with the budget from different
humanitarian organizations.

Fourth, our study demonstrates that the benefits
from the combined surface and air shipment planning
reduces the total expected shortage when there are
more regions to serve. A higher number of regions
provides the risk-pooling benefits when the budget
increases linearly in the number of regions to serve.
Positive correlation between the demands of multiple
regions, however, presents a tougher challenge to an
HO that is seeking to minimize shortages. The bene-
fits of the responsive air transportation option
decreases with respect to correlation, resulting in an
increase in the amount of expected shortages.

In light of the above conclusions, our analysis leads
to seven lessons for the managers of humanitarian
organizations whose goal is to minimize the shortage
of supplying essential goods to countries of desperate
need.

1. Allocate budget for air shipments when demand for
humanitarian good is uncertain. Even under lim-
ited budget, the HO might reduce expected
shortages by reserving some inventory for
rapid shipments. This recommendation holds
true when the limited budget is sufficient to
cover the minimum demand. This recommen-
dation relies on the cost of air shipment to be
less than a certain threshold established in
Proposition 3.

2. When budget is extremely limited to reserve
funds for air shipments, the HO should send
all supplies with surface movement and allocate

inventory to each country at an equal service level,
that is, the probability of satisfying all demand
from inventory should be the same in each
country.

3. When the HO reserves some funds for air ship-
ment, it should increase its surface movement to
countries with higher demand uncertainty.

4. When the HO optimally allocates funds for
surface shipments, higher demand uncertainty
leads to a higher probability of shortages with an
increased level of expected shortages.

5. The impact of increased demand uncertainty on
funds reserved for air shipment depends on the
severity of budget limitations. When the funding
allocated for surface shipment to a country is
less than the expected demand in that country
(e.g., tends to arise when the total budget is
low relative to total projected demand), the
HO should increase its funds reserved for air
shipment with higher degrees of demand
uncertainty while reducing it for its surface
allotment to that country. On the other hand, if
the funds reserved for surface shipment to a
country is greater than the expected demand
in that country, the HO should decrease its
budget for air shipment with higher degrees of
demand uncertainty while increasing the bud-
get for its surface allotment to that country.

6. When the HO can put effort into reducing
demand uncertainty (while keeping the total
demand uncertainty constant), then it should fo-
cus on reducing the uncertainty in one market
(rather than having equal amount of uncer-
tainty) in order to minimize expected shortages.
By eliminating the uncertainty in one country,
the HO can purchase the exact amount of needs
and send supplies with surface transportation.
This leads to significant savings in costly air
shipment, thereby increasing the efficient use of
funds and yielding a smaller expected shortage.

7. The HO should not give in to the pressure from
local country authorities to stock more invento-
ries through surface shipment. Such a consid-
eration can lead to suboptimal decisions
yielding a higher expected shortage.

Our study is originally motivated by the challenges
for UNICEF's RUTF supply chain, however, our
model is generalizable for other perishable humani-
tarian goods. It is beneficial for other perishable
humanitarian goods that have long lead times for sur-
face transportation. Medical supplies, pharmaceutical
products that are necessary in treating diseases such
as malaria in Africa also have long lead times, and
thus, our work is suitable for the acquisition and dis-
tribution of these products in order to minimize the
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expected shortages. Moreover, our model is beneficial
in terms of developing a response mechanism to the
recent needs of the Syrian refugee crisis by allowing
for uncertainty in the needs of humanitarian goods in
different regions.
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Notes

1https: / /www.humanitarianresponse.info/system/files/d
ocuments/files/unicef syria_monthly_humanitarian_situ
ation_report_140815.pdf.

2Source: UNICEF Supply Division, July 2015, (http://
www.unicef.org/supply/files/RUTF_Pricing_Data_final
July_2015.pdf). Nutriset prices are in Euros; we apply 1.2
USD/euro exchange rate to derive the price in USD.

%If all we know about a random variable is that it takes
values over a finite range, then we can only use uniform
distribution. If we assume any distribution other than uni-
form, then it implies that we have additional information
about the distribution of the random variable.

*Source: http:/ /www.unicef.org/supply/files/Overview
of UNICEF RUTF Procurement in_2010.pdf.

5If & > 4620, then the lower support of D, becomes
negative.
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