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Wine Analytics 
 

Among agricultural goods, wine is a specialty product. Fine wine grapes require exceptional care and 
attention. After the harvest, grapes are crushed and the wine goes through a long aging process. In the 
case of Bordeaux-style wines, for example, the aging process in barrels can last 18 to 24 months. The 
aging continues for another 20 to 30 years in the bottle. This long aging process makes wine production a 
risky venture. Consumers follow the evolution of these fine wines closely, track their corresponding 
tasting reviews and scores, and are often informed about climatic conditions during the growing seasons. 
Thus, wine is one of the most heavily tracked and publicized agricultural products. Considering the long 
production time, winemakers can mitigate their operational and financial risks by selling their wines in 
advance in the form of wine futures.  
 
In this tutorial, we describe predictive and prescriptive analytical methods that assist primary enterprises 
that produce and distribute wine in their decision-making processes. The tutorial begins with predictive 
models that estimate the true value of wine futures prices. These estimation models are essential to the 
financial exchange known as the London International Vintners Exchange (Liv-ex) where wine futures 
contracts are traded. Coined as “realistic prices” by Liv-ex, these predictive models assist buyers in their 
purchasing decisions as they can determine whether a futures contract is underpriced or overpriced. The 
tutorial then develops risk mitigation models to assist winemakers in mitigating uncertainty in weather 
conditions and tasting expert reviews. These prescriptive models rely on predictive analytics which help 
determine consumers’ utilities from buying the wine in advance, or later, or not purchasing it at all. 
Prescriptive models such as a multinomial logit model focus on determining how much of the wine 
should be sold in advance in order to reduce risk exposure and maximize the expected profits of the 
winemaker. On the buyer side, the tutorial introduces stochastic portfolio optimization models for both 
wine distributors and importers in their decision regarding how to allocate limited budgets between wine 
futures contracts and bottled wine. These prescriptive models are, once again, built on predictive analytics 
that estimate the evolution of futures and bottle prices over time under fluctuating market and weather 
conditions.  
 
Wine is an exemplary agricultural product; its production and quality perceptions are widely tracked by 
businesses and consumer. The predictive and prescriptive models of this tutorial help create transparency 
in this largely opaque market. They assist the industry in its drive towards market efficiency. The tutorial 
also offers future research directions in wine analytics and describes how these techniques can be 
beneficial for the production and distribution of other agricultural products.  
 
Keywords: wine analytics, wine futures, price, weather, barrel score, Liv-ex 100, wine economics 

 

1.  Introduction 
Wine is an important agricultural product with a growing global interest. The global wine market is 

estimated to be greater than $385 billion in 2020 and is expected to grow annually by 3.7%. The US wine 

industry generates $52 billion annually. Italy produces the largest amount of wine, but France is the most 

celebrated wine producing country with the greatest amount of exports. The Bordeaux region of France, 

for example, produces the most sought-after wines in the world. Bordeaux wine prices often influence the 

prices of wines globally. Many countries try to emulate the Bordeaux-style winemaking by growing 



2 
 

Bordeaux varietal grapes. Thus, Bordeaux wines are perceived as the best wines and they set the pace in 

global wine supply chains.  

Wine production departs from other agricultural products for several reasons. First, the time it takes to 

produce wine is substantially longer than most agricultural commodities. Second, consumers follow the 

reviews of well-known tasting experts and their publications wholeheartedly. While grape production also 

encounters risks stemming from climatic conditions, diseases (e.g., botrytis) and economic fluctuations, it 

has the added risks of long production times and potentially devastating reviews. Third, wine is an 

alternative investment mechanism. Financial institutions and investment banks follow the trends in the 

industry and provide reports that offer recommendations for industry participants and their clients. 

McMillon (2020), for example, offers a report from Silicon Valley Bank regarding the state of the wine 

industry in the US. The report demonstrates the need for rigorous analytical methods that will support the 

interests of the wine enterprises as well as the investors.  

We focus on the risk mitigation aspects of analytics that help decision makers in the wine supply 

chain. Specifically, we focus on one element that combines the tools known in marketing as “advance 

selling,” as “inventory financing” in supply chain finance and as “wine futures” in the wine industry. 

Because wine takes a long time to age, wine futures enable winemakers to sell the wine in the form of 

futures contracts. We illustrate in Section 2 through predictive analytics models how wine futures can be 

assessed, evaluated and estimated. In Section 3, we show how winemakers can determine the price and 

amount of wine futures to be sold in order to mitigate the risks stemming from uncertain tasting reviews 

and retail prices. Section 4 utilizes these instruments in designing a buyer’s (e.g., wine distributor and/or 

importer) purchasing portfolio under limited budgets and varying risk profiles. Section 5 offers 

prescriptions regarding future research directions.  

What is wine analytics? Wine analytics refers to employing analytical methodologies, be it predictive 

or prescriptive, to solve problems in the wine industry. One might wonder whether wine analytics 

constitutes an area of study, especially in the presence of a field called wine economics. It should be 

emphasized that the wine economics literature focusses on “explaining” the impact of factors such as 

climatic conditions and tasting reviews in wine problems. Wine analytics, on the other hand, develops 

methods that “predict” the evolution of agricultural, climatic, economic conditions and market conditions 

and build “prescriptive models” in order to guide executives and managers of wine businesses.  

1.1. Literature Review 

Wine draws attention from various fields including agricultural economics, marketing, tourism, 

hospitality and operations management. The emergence of wine economics as a field of study has led 

many scholars in economics to examine various problems. We provide some background on these areas.  
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Wine Economics. The research question associated with the pricing of wine has attracted numerous 

scholars to investigate the factors that influence the value of these agricultural goods. The wine 

economics literature dedicates econometric models in order to “explain” wine prices using weather 

conditions. However, there is a limited amount of work that “predict” the value of these goods. The two 

publications known for predictive analytics are Ashenfelter (2008) and Hekimoğlu and Kazaz (2020). The 

wine economics literature examines the pricing of aged wine using weather and expert opinions, however, 

these studies fail to estimate young wine prices, i.e., the prices that initiate the trade when the wine is in 

its early stages of aging. Young wine prices are important because leading Bordeaux wines are primarily 

sold before they are bottled; they are traded in the form of wine futures contracts. Ashenfelter et al. (1995) 

and Ashenfelter (2008) show that mature Bordeaux wine prices can be explained using weather and age. 

These two publications report significantly high errors for young wines. Hekimoğlu and Kazaz (2020) 

uses Ashenfelter (2008) as the benchmark study in order to demonstrate the effectiveness of their 

predictive models. Table 1.1 provides a comprehensive list of publications that explain wine prices using 

either weather information or tasting experts’ reviews. Bazen and Cardebat (2018) build statistical models 

in order to predict the prices of generic wines in Bordeaux; these wines are often sold in bulk and are not 

traded in the form of wine futures. Gergaud et al. (2017) evaluate the collective economic benefits rather 

than the price. Wine analytics literature complements this wine economics literature by building 

predictive pricing models that provide transparency to the constituents of the wine supply chains.  

 

Publication / Factors examined Temperature Rainfall Tasting 
score 

Liv-ex 100 
index 

Consecutive vintage 
comparison 

Ashenfelter et al. (1995) + +    
Byron and Ashenfelter (1995) + +    
Combris et al. (1997)   +   
Jones and Storchmann (2001) + + +   
Cardebat and Figuet (2004)   +   
Haeger and Storchmann (2006) + + +   
Lecocq and Visser (2006) + +    
Wood and Anderson (2006) + +    
Ali and Nauges (2007)   +   
Ali et al. (2008)   +   
Ashenfelter (2008) + +    
Ashenfelter and Storchmann (2010) + +    
Dubois and Nauges (2010)   +   
Ashenfelter and Jones (2013) + + +   
Dimson et al. (2015) + +    
Ashton (2016)   +   
Cardebat et al. (2017)   +   
Hekimoğlu and Kazaz (2020) + + + + + 

Table 1.1. The list of factors used in publications that examine wine prices.  
 

The wine economics literature pays close attention to the influence of tasting expert opinions. There 

are publications (e.g., Wine Advocate, Wine Spectator, Decanter) that give tasting reviews and scores. 
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Avid consumers follow these numbers closely as they create a quality perception. Wine prices are 

influenced by the tasting scores. Quality perceptions are also created for other agricultural products. The 

quality of an olive oil, for example, is determined by an oleic acidity test (Ayvaz-Çavdaroğlu et al. 2020); 

thus, it is much less subjective than a tasting expert’s score. There are futures for olive oil in global 

markets; however, the oils that get traded are almost always poorer in quality. The predictive and 

prescriptive analytical methods developed for wine can also be used in other agricultural products. In the 

case of an olive oil, the tasting score would be replaced by an oleic acidity level (a numerical value 

between 0.3% and 2%).  

Fluctuations in economic conditions also influence wine prices. Traditional financial indices, e.g., 

The Standard & Poor’s 500 index and the Dow Jones index, do not explain the movements in wine prices. 

Rather, the industry needs to follow new and different indices. London International Vintners’ Exchange 

(Liv-ex) is the financial exchange where fine wines and their futures contracts are traded. Liv-ex has 

established the Liv-ex 100 index which constitutes the prices of the most sought-after 100 wines in the 

world, most of which are from Bordeaux. This index is used to describe the financial health and 

sustainability of the global wine industry; it is widely cited by Bloomberg and Reuters to inform 

investors. Hekimoğlu et al. (2017) show that the Liv-ex 100 index can be used to examine the influence of 

market fluctuations. Cardebat and Jiao (2018) conclude that the Liv-ex 100 serves as a proxy reflecting 

the consumers’ willingness to pay for fines wines. Hekimoğlu and Kazaz (2020) show how the Liv-ex 

100 index can be used in a predictive analytical model for Bordeaux wine futures. However, the literature 

in the creation of wine indices is sparse. Masset and Weisskopf (2018b) argue that indices that are 

developed for the wine industry are not as efficient as other commodity markets.  

Finance. Wine is an alternative investment asset. Storchmann (2012) provides a comprehensive 

review about wine economics literature focusing on wine as an investment option. Dimson et al. (2015) 

find that young Bordeaux wines yield greater returns than mature ones. This finding further amplifies the 

importance of explaining the evolution of young wine prices; Hekimoğlu et al. (2017) provide the 

predictive models to develop functional forms of this price evolution. Jaeger (1981), Burton and Jacobsen 

(2001), Masset and Henderson (2018), Masset and Weisskopf (2016) and Masset et al. (2016) conclude 

that wine can be used as a long-term investment. Jaeger (1981), Burton and Jacobsen (2001), and Dimson 

et al. (2015) show that wines can yield greater returns than treasury bills, but less than equities. Masset 

and Weisskopf (2018a) demonstrate that fine wines often yield higher returns than equities especially 

when there is a financial crisis and when financial assets are highly correlated.  

Marketing. This literature focuses on consumers’ preferences, their willingness to pay functions, and 

their experiences in tasting rooms. Schmit et al. (2013) use sensory effects to explore customer valuation 

of environmentally friendly wines. Kelley et al. (2017) present a conjoint analysis to examine consumers’ 



5 
 

preferences for wines. Perla (2014) examines consumer preferences and sensory effects and provides 

guidance in the marketing of wine in restaurants. Kelley et al. (2020) extend this work to marketing in 

tasting rooms. Park et al. (2018) investigate what makes consumers revisit a winery. Back et al. (2019) 

relates these marketing preferences to margins and markups in fair trade wine supply chains.     

Operations-Marketing Interface. This literature builds on the advance selling mechanisms originally 

developed in marketing. Xie and Shugan (2001), Boyacı and Özer (2010), Cho and Tang (2013), Tang 

and Lim (2013) and Yu et al. (2015a, 2015b) examine advance-selling quantity decisions under 

uncertainty and risk. Noparumpa et al. (2015) develop a prescriptive model for a winemaker (seller) to 

determine the proportion of wine to be sold in the form of wine futures – the remaining proportion is 

distributed after the wine is bottled. Hekimoğlu et al. (2017) develop a stochastic program to solve a wine 

distributor’s (buyer) purchasing decision between wine futures and bottled wine.  

Operations literature examines problems for other agricultural products in the context of uncertainty 

in climatic conditions and crop supply. Examples include Jones et al. (2001), Kazaz (2004), Kazaz and 

Webster (2011, 2015), Boyabatli et al. (2011), Boyabatli (2015) and Noparumpa et al. (2020).  

In the remaining part of this tutorial, we build predictive and prescriptive models that estimate and 

employ wine futures. They can create a less risky operating environment for winemakers, offer 

transparency to the buyers, and build confidence in the efficiency of the wine market.  

2. Predictive Analytics for Wine Futures 
Wine futures is a term that refers to selling wine in advance of bottling. It is a mechanism to help 

winemakers mitigate the uncertainty in their future cash flows. By selling early, a winemaker can 

recuperate her cash investment in the wine that will be sitting in the barrel for an additional year before it 

is bottled.  The wine may not even sell immediately after bottling and it may sit on retail shelves without 

earning money for some time. Selling wine in the form of wine futures has been practiced by French 

winemakers since the 17th century. Winemakers are often willing to sell their wine in the form of wine 

futures at a discounted price. These reduced prices make it attractive for buyers such as wine distributors 

and importers. In this section of the tutorial, we begin our discussion by describing the trade mechanisms 

that serve as the foundation for the most celebrated wines, those of the Bordeaux region. Then, we 

develop predictive analytics models that focus on the most critical and challenging question in the wine 

industry: What is the right price for these wine futures contracts?  

Ashenfelter et al. (1995) and Ashenfelter (2008) use level panel data and provide successful 

regression results in estimating the impact of weather on aged Bordeaux wines. However, their models do 

not estimate young wine prices accurately. We present new predictive analytics approaches that lead to 

accurate estimations for young wine prices. We focus on the wines that are still aging in the barrel but 

traded in the form of France’s en primeur system which is loosely translated into English as wine futures.  
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Let us begin our discussion with the winemaking process in the Bordeaux wine supply chain. Figure 

2.1 presents a timeline of events in the winemaking process. Chateaus grow their grapes on their estate 

from May to August each summer. Grapes are harvested and pressed in early fall. The wine is referred to 

as vintage t and it begins its aging process in barrels at this time. In the spring of calendar year t + 1, 

tasting experts visit chateaus, taste samples, and establish what is known as “the barrel score.” These 

barrel scores are often described out of 100 points and they create a perception of quality for buyers and 

consumers. In the French system, following the release of barrel scores, chateaus begin to sell their wines 

to middleman known as négociants. Négociants purchase the wine from chateaus at a price what the 

market refers to as the ex-chateau price. The ex-chateau prices are private information and are not known 

publicly. At the beginning of the summer of year t + 1, négociants sell the wine immediately in terms of 

futures contracts through a financial exchange – this price is referred to as the ex-négociant price and is 

known as the futures price. A vast majority of Bordeaux wines, more than 80% and often 100%, are 

traded in the form of wine futures in the summer of year t + 1.  

 

 
Figure 2.1. The sequence of events leading to the revelation of ex-négociant prices for vintage t wines. 

 

It is important to highlight that the ex-négociant price is the “market price” for wine futures. The 

predictive analytics model presented in this section aims to estimate this market price; the estimate 

represents the true value of the wine futures price known as the ex-négociant price in Liv-ex. This price is 

important for the entire supply chain because it sets the pace in the downstream and influences the trade 

significantly. After being sold in the form of wine futures, the wine continues to age in barrels for another 

year. It gets bottled during the summer of year t + 2. As a result, the total aging process is 18 to 24 

months. In the absence of wine futures, this is a long period of time to have cash tied up in this 

continually evolving good. After bottling, the wine gets delivered to the buyers of futures contracts – the 

shipment is made from the négociants to the buyers who are often distributors and importers. 

Estimating the true value of the market price is a challenging task and even industry experts fail to 

provide meaningful estimates. A 2016 Liv-ex survey involving 440 of the world’s leading wine 
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merchants shows the estimation errors of industry experts regarding the futures prices of the 2015 

vintage: https://www.liv-ex.com/2016/06/merchants-underestimated-bordeaux-2015-release-prices/. The 

survey relied on a basket of futures contracts from Bordeaux’s premium wine producers Cheval Blanc, 

Cos d’Estournel, Leoville Las Cases, Mission Haut Brion, Montrose, Mouton Rothschild, Pavie, Pichon 

Lalande, Pontet Canet and Talbot. The 2016 survey results show that these 440 leading wine merchants 

under-estimated the total value of the basket by 21%. These experts estimated a 17.8% increase in the 

futures prices for the 2015 vintage from the futures prices of the same wines’ 2014 vintage. The actual 

prices, however, increased by 45.8%. This is a great example of the need for a predictive analytics study 

intended to estimate wine futures prices accurately.  

A reliable futures price estimate is essential for the wine industry. In the absence of good estimations, 

buyers would have the inertia to invest in wine futures. Conversations with the executives of the largest 

wine distributors in the US confirm this concern. These executives point to the necessity for establishing a 

benchmark price so that they can determine in confidence whether a wine is overpriced or underpriced, 

and thus, whether they should invest a smaller or large amount of money into futures contracts. One 

might wonder why we cannot decide this value by using just the tasting scores. We must remember that 

barrel scores established by the tasting experts do not immediately translate to prices. The predictive 

analytics approach in Hekimoğlu and Kazaz (2020) fills the necessary gap and it establishes the much-

needed benchmark prices. Reliable estimations from predictive analytics bring transparency into this 

otherwise highly opaque market.  

The adjustments in futures prices from the previous vintage exhibit a highly similar behavior in 

Figure 2.2. The reliance on the prior vintage’s futures prices appear to be an operational planning 

phenomenon. Chateaus replace barrels each year, bottle the wine and push it downstream, and take in the 

new batch of grapes in order to produce the next vintage’s wine. By selling their wine in the form of wine 

futures, they recover their cash investment in one year and use these funds to finance next year’s 

operations. Négociants also operate on a yearly basis; they move the inventory of the wine futures 

contracts they purchased from chateaus to the market so that they can recover their cash investment in 

these futures agreements. In sum, this one-year planning phenomenon creates a coordinated financial and 

physical flow that influences adjustments from the prior vintage’s futures prices. It turns out that, when 

this one-year operational emphasis is incorporated into the predictive model, the estimations improve 

significantly. Hekimoğlu and Kazaz (2020) make use of the one-year operational planning phenomenon 

displayed in Figure 2.2. They define a unique variable definition that compares two consecutive vintages 

and use this “change” variable rather than level panel data. This variable definition is shown to improve 

accuracy. 

https://www.liv-ex.com/2016/06/merchants-underestimated-bordeaux-2015-release-prices/
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Hekimoğlu and Kazaz (2020) develop a comprehensive predictive analytics model in order to 

estimate wine futures prices. Their study examines a total of 33 factors but identify that there are only five 

key factors that estimate futures prices accurately: (1) Temperature; (2) precipitation; (3) the Liv-ex 100 

index; (4) barrel scores of the most influential tasting experts, and (5) a positive interaction term that 

captures the improvement in temperatures and market conditions from the previous vintage.  

 

 
Figure 2.2. Percentage change in the futures prices from the previous vintage between 2002 and 2017 for 

40 Bordeaux chateaus examined in Hekimoğlu and Kazaz (2020). 
 

The online supplement provides the details of the data used in the analysis of Hekimoğlu and Kazaz 

(2020). In summary, futures prices are collected from Liv-ex (www.liv-ex.com); Table A1 of the online 

supplement provides the details of the chateaus involved in the analysis. Météo-France is the primary 

source for local weather information. The Merignac and Saint-Emilion weather stations are the main 

weather locations for the Left Bank and Right Bank chateaus, respectively. The weather data consists of 

daily maximum temperatures (in °C) and daily total rainfall (in cm) during the growing season (May 1 – 

August 31). Figure A1 of the online supplement illustrates the weather data between 2001 and 2017. 

Barrel tasting scores are provided by Liv-ex. They rely on the most influential publication: Wine Advocate 

and RobertParker.com1. The Liv-ex Fine Wine 100 Index captures market-wide fluctuations in this 

industry. Even though the index includes only bottled wines of older vintages, the value of the index is an 

excellent proxy for reflecting consumers’ willingness to pay for fine wines. Figure A2 of the online 

supplement illustrates the values of Liv-ex 100 since its inception in July 2001. 

 

 
1 The late President François Mitterrand recognized Robert Parker with the Chevalier de l’Ordre National du Mérite 
in 1993, and President Chirac awarded Robert Parker with France’s Legion of Honor, an extremely rare distinction, 
in 2005 for his contributions to the quality and education of French wines. The industry perceives Robert Parker as 
the most influential tasting expert. 

http://www.liv-ex.com/


9 
 

2.1. Predictive Analytics Model 
The predictive model in Hekimoğlu and Kazaz (2020) uses the following dependent and independent 

variable definitions:  

Change in futures prices. The dependent variable is the logarithmic change across the futures prices 

of two consecutive vintages from the same chateau, i.e., Δpi,t = log(pi,t/pi,t-1) where pi,t is the futures price 

of vintage t of chateau i.  

Change in average temperature. The temperature variable is the logarithmic change across the 

average growing season temperatures of two consecutive vintages, i.e., Δmi,t = log(mi,t/mi,t-1) where mi,t is 

the average of daily maximum temperatures during the growing season (May 1 – August 31) of year t in 

the region where chateau i is located. Because warmer temperatures are expected to produce a higher 

quality wine, a positive change is expected to result in higher prices from the previous vintage. 

Change in total rainfall. The precipitation variable is the logarithmic change across the total growing 

season rainfall of two consecutive vintages, i.e., Δri,t = log(ri,t/ri,t-1) where ri,t is the total rainfall during the 

growing season period of year t in the region where chateau i is located. A rainier growing season is 

expected to have a negative impact on the ex-négociant price. 

Change in barrel tasting score. The barrel score variable is the difference between the barrel tasting 

scores of two consecutive vintages of the same chateau, i.e., Δsi,t = si,t – si,t-1 where si,t is the barrel tasting 

score of vintage t of chateau i. A higher score is expected to have a positive impact on the ex-négociant 

price. 

Change in Liv-ex 100. The Liv-ex 100 index variable is the logarithmic change in the value of Liv-ex 

100 index between the en primeur campaign of the previous vintage and shortly before the en primeur 

campaign of the new vintage. It is expressed as Δlt = log(lt
mar/lt-1

may) where lt-1
may is the value of Liv-ex 

100 around the en primeur campaign of vintage t – 1 (corresponding to May of year t), and lt
mar is the 

value of Liv-ex 100 in March prior to the en primeur campaign of vintage t (corresponding to March of 

year t + 1). The index value at the end of March is used in order to predict prices, rather than to explain 

prices. A positive change in the Liv-ex 100 index is expected to have a positive impact on the ex-

négociant price. 

Table A2 in the online supplement shows that the correlation coefficients among these variables are 

not strong enough to suggest any collinearity issues. Figure 2.2 highlights the hype effect that can be seen 

in vintages that are tagged as phenomenal, e.g., 2003, 2005 and 2009. To capture this hype effect, 

Hekimoğlu and Kazaz (2020) define additional positive interaction variables.  

Positive Interaction variables. The following six interaction variables are defined in order to combine 

the pairwise positive effects of temperature and rainfall (mri,t)+, temperature and Liv-ex 100 (mli,t)+, 
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temperature and barrel score (msi,t)+, rainfall and Liv-ex 100 (rli,t)+, rainfall and barrel score (rsi,t)+, and 

Liv-ex 100 and barrel score (lsi,t)+: 

(mri,t)+ = Δmi,t × |Δri,t| if mi,t > mi,t-1 and ri,t < ri,t-1, (mri,t)+ = 0 if otherwise; 

(mli,t)+ = Δmi,t × Δlt if mi,t > mi,t-1 and lt
mar > lt-1

may, (mli,t)+ = 0 if otherwise; 

(msi,t)+ = Δmi,t × Δsi,t if mi,t > mi,t-1 and si,t > si,t-1, (msi,t)+ = 0 if otherwise; 

(rli,t)+ = |Δri,t| × Δlt if ri,t < ri,t-1 and lt
mar > lt-1

may, (rli,t)+ = 0 if otherwise; 

(rsi,t)+ = |Δri,t| × Δsi,t if ri,t < ri,t-1 and si,t > si,t-1, (rsi,t)+ = 0 if otherwise; 

(lsi,t)+ = Δlt × Δsi,t if lt
mar > lt-1

may and si,t > si,t-1, (lsi,t)+ = 0 if otherwise. 

Other explanatory variables. As will be seen later, Hekimoğlu and Kazaz (2020) report that they test 

a total of 33 explanatory variables; however, as presented in the online supplement, the remaining 

variables are not selected by the Lasso analysis.  

2.2. Analysis and Results 

The results of the ordinary least squares (OLS) regression of various models is presented in Table 2.1 

with cluster-robust standard errors (using classical standard errors leads to the same statistical inferences). 

Models 1 through 4 show that each independent variable (temperature, rainfall, barrel score, and Liv-ex 

100) influence futures prices independently at the highest statistical significance. Moreover, their 

coefficients produce the positive and negative values as expected. Model 5 uses only weather 

information: temperatures and rainfall. Model 6 adds barrel scores, and Model 7 uses all four independent 

variables. All variables in Models 5, 6, and 7 continue to be significant at 1%. Variance inflation factors 

(VIF) for the variables in Model 7 are 1.06 for Δlt, 1.24 for Δsi,t, 1.41 for Δmi,t, and 1.62 for Δri,; they are 

substantially lower than the well-established threshold of 5.00 for collinearity (Studenmund 2016). 

Models 8 through 13 add the positive interaction terms to Model 7; they reveal positive coefficients as 

expected in accordance with their definition and are statistically significant at 1%. Models 14 – 16 study 

the combined effects of two interaction terms. Model 9 prevails as the predictive model to be used. This 

conclusion comes from the Akaike information criterion (AIC) that determines the best estimation model. 

The preferred model, Model 9, has the minimum AIC value -133.56 and a relatively high R2 of 74.62% 

with all statistically significant coefficients. Model 9 can be described as:  

Δpi,t = α0 + α1Δmi,t + α2Δri,t + α3Δsi,t + α4Δlt + α5(mli,t)+ + εi,t.           (1) 

VIF for Model 9 variables are 1.24 for Δsi,t, 1.41 for Δlt, 1.63 for Δmi,t, 2.01 for Δri,, and 2.43 for (mli,t)+ 

which are all less than the commonly used threshold of 5.00 for collinearity. Thus, there is no collinearity 

issue in the predictive analytics model. It is also important to observe that Model 15 has a higher R2 than 

Model 9, however, the additional interaction term (rsi,t)+ is not significant and it has a lower AIC score 

indicating less desirability for predictive purposes.  
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 Model  
1 

Model  
2 

Model  
3 

Model  
4 

Model  
5 

Model  
6 

Model 
7 

Model  
8 

Model  
9 

Model 
10 

Model 
11 

Model 
12 

Model 
13 

Model 
14 

Model 
15 

Model 
16 

Int. 0.060 
15.64*** 

0.077 
19.59*** 

0.056 
12.35*** 

-0.007 
-1.28 

0.072 
19.33*** 

0.066 
14.95*** 

-0.004 
-0.64 

-0.056 
-6.65*** 

-0.086 
-8.84*** 

-0.022 
-2.60** 

-0.049 
-5.80*** 

-0.029 
-3.30*** 

-0.024 
-2.57** 

-0.061 
-6.85*** 

-0.083 
-8.29*** 

-0.061 
-6.36*** 

Δmi,t 2.931 
13.66*** 

   1.205 
6.40*** 

1.026 
5.68*** 

1.594 
8.21*** 

1.027 
5.84*** 

0.568 
3.59*** 

1.189 
5.58*** 

1.775 
8.59*** 

1.568 
8.02*** 

1.538 
7.99*** 

1.063 
6.22*** 

0.536 
3.54*** 

1.465 
6.44*** 

Δri,t  -0.507 
-17.48*** 

  -0.427 
-16.87*** 

-0.352 
-14.57*** 

-0.241 
-11.67*** 

-0.114 
-5.38*** 

-0.060 
-2.99*** 

-0.253 
-11.80*** 

-0.054 
-2.34** 

-0.174 
-6.79*** 

-0.218 
-8.28*** 

-0.117 
-5.60*** 

-0.068 
-3.17*** 

-0.071 
-3.16*** 

Δsi,t   0.066 
11.76*** 

  0.035 
6.88*** 

0.035 
8.14*** 

0.033 
8.35*** 

0.032 
8.76*** 

0.028 
5.66*** 

0.037 
8.95*** 

0.029 
6.65*** 

0.026 
6.91*** 

0.028 
7.72*** 

0.034 
8.39*** 

0.031 
6.72*** 

Δlt    1.556 
18.23*** 

  1.405 
16.61*** 

1.168 
14.31*** 

0.835 
12.37*** 

1.391 
16.68*** 

1.084 
14.09*** 

1.303 
16.32*** 

1.196 
14.86*** 

1.076 
14.03*** 

0.836 
12.34*** 

1.087 
14.14*** 

(mri,t)+        7.626 
8.67*** 

     6.712 
6.31***   

(mli,t)+         54.318 
14.50*** 

     56.319 
13.95***  

(msi,t)+          0.393 
3.15*** 

     0.293 
2.81*** 

(rli,t)+           2.109 
9.70*** 

    2.021 
9.32*** 

(rsi,t)+            0.079 
4.38*** 

  -0.017 
-0.98  

(lsi,t)+             0.280 
3.74*** 

0.162 
2.07**   

R2 19.00% 34.48% 21.41% 28.52% 36.82% 41.83% 63.76% 67.32% 74.62% 64.50% 67.26% 65.29% 65.30% 67.78% 74.68% 67.66% 

N 626 626 623 626 626 623 623 623 623 623 623 623 623 623 623 623 

AIC 581.41 448.63 562.69 503.15 427.81 379.20 86.40 24.05 -133.56 75.52 25.23 61.57 61.40 17.24 -133.05 19.44 

Table 2.1. Regression results for the dependent variable Δpi,t in Hekimoğlu and Kazaz (2020).   
T-statistics using cluster-robust standard errors are given in italics below the coefficients.  

*, **, *** denote statistical significance at 10%, 5%, 1%, respectively. 
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Using the equation (1) of Model 9, the predictive analysis populates the estimated futures prices ,ˆ i tp

by converting the  realized future prices of the previous vintage, denoted pi,t-1: 

( ), , , 1
ˆˆ expi t i t i tp p p −= ∆ .           (2) 

Figure 2.3 shows the accuracy of Model 9 by plotting the estimated and actual futures prices and fitting a 

line. The fitted line y = 1.0002x has a slope extremely close to 1 and has an R2 value of 94.87%. The 

figure reveals a remarkable success in prediction accuracy. 

 

 
Figure 2.3. The fit between the actual and estimated futures prices in Hekimoğlu and Kazaz (2020) for 

the vintages between 2002 and 2017 using Model 9 where N = 623. 
 

2.4. Prediction Accuracy with Out-of-Sample Testing 
Ashenfelter (2008) reports that its predictive model has a mean absolute percentage error of 36.14% for 

vintages between 1967 and 1972. How does Model 9 perform in an out-of-sample test? Hekimoğlu and 

Kazaz (2020) employ an out-of-sample test by holding out the data for vintages between 2015 and 2017. 

Their approach trains the model by using the data for vintages up until 2014 and makes predictions for the 

2015 vintage. The test is then replicated by including the data for 2015 and 2016 in re-estimating the 

coefficients in order to predict the 2016 and 2017 vintage prices, respectively. Defining the percentage 

error for the 2017 vintage as ( ), 2017 , 2017 , 2017 , 2017ˆi t i t i t i te p p p= = = == − , Table 2.2 shows the estimated and 

actual futures prices for the 2017 vintage and their percentage errors. Model 9 has a mean absolute 

percentage error of 9.19% with a standard deviation of 7.17%. More than two thirds of the chateaus have 

prediction errors with less than 10%.  

To see the prediction accuracy, Model 9 is compared with three benchmark models:  

Model B0: log(pi,t) = α0 + α1log(mi,t) + α2log(ri,t) + μi + εi,t 
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Model B1: log(pi,t) = α0 + α1log(mi,t) + α2log(ri,t) + α3log(lt
mar) + μi + εi,t; 

Model B2: log(pi,t) = α0 + α1log(mi,t) + α2log(ri,t) + α3log(lt
mar) + α4si,t + μi + εi,t 

where μi represents the time-invariant chateau characteristics. Models B0-B2 rely on the traditional level 

panel data and do not employ the definition of change variables. Model B0 is equivalent to the prediction 

model of Ashenfelter (2008) which relies solely on weather information. Model B1 incorporates the Liv-

ex 100 index to Model B0, and Model B2 adds the barrel scores to Model B1. Note that Model 7 uses the 

same four factors but employs the change variable definition.  

 

Chateau (i) 

Estimated 
Price (€) 

, 2017ˆ i tp =  

Actual 
Price (€) 

, 2017i tp =  

Error  
(%) 

, 2017i te =  Chateau (i) 

Estimated 
Price (€) 

, 2017ˆ i tp =  

Actual 
Price (€) 

, 2017i tp =  

Error  
(%) 

, 2017i te =  

Angelus 269.38 276.00 -2.40% Lafleur 425.56 460.00 -7.49% 
Ausone 505.77 480.00 5.37% Leoville Barton 63.33 52.80 19.94% 
Beychevelle 46.62 52.80 -11.70% Leoville Las Cases 153.04 144.00 6.27% 
Calon Segur 56.51 60.00 -5.81% Leoville Poyferre 57.91 54.00 7.25% 
Carruades Lafite 134.42 135.00 -0.43% Lynch Bages 79.08 75.00 5.44% 
Cheval Blanc 474.80 432.00 9.91% Margaux 368.55 348.00 5.90% 
Clarence (Bahans) 
Haut Brion 101.56 102.00 -0.43% Mission Haut Brion 285.67 240.00 19.03% 

Clinet 63.92 56.00 14.14% Montrose 92.38 96.00 -3.77% 
Clos Fourtet 73.51 72.00 2.09% Mouton Rothschild 368.55 348.00 5.90% 
Conseillante 133.17 120.00 10.97% Palmer 224.34 192.00 16.84% 
Cos d'Estournel 105.30 108.00 -2.50% Pape Clement 59.77 61.20 -2.33% 
Ducru Beaucaillou 126.07 120.00 5.06% Pavie 245.02 276.00 -11.23% 
Duhart Milon 49.81 48.00 3.77% Pavillon Rouge 103.25 132.00 -21.78% 
Eglise Clinet 206.16 168.00 22.72% Pichon Baron 103.25 96.00 7.55% 
Evangile 154.83 180.00 -13.98% Pichon Lalande 108.68 90.00 20.76% 
Grand Puy Lacoste 52.65 52.80 -0.28% Pontet Canet 97.81 80.00 22.27% 
Gruaud Larose 47.82 51.75 -7.60% Smith Haut Lafitte 69.56 67.20 3.51% 
Haut Bailly 73.71 72.00 2.37% Troplong Mondot 91.99 72.00 27.77% 
Haut Brion 380.38 348.00 9.30% Vieux Chateau Certan 181.57 168.00 8.08% 
Lafite Rothschild 438.97 420.00 4.52%  

Mean Absolute % Error = 9.19% Min. of Absolute % Error = 0.28% 
Std. Dev. of Absolute % Errors = 7.17% Max. of Absolute % Error = 27.77% 

Table 2.2. The estimated and actual futures prices for the 2017 vintage in Hekimoğlu and Kazaz (2020). 
 

Table 2.3 provides the comparison of models B0, B1, B2, 7, and 9 in the same out-sample-test and 

makes the following conclusions: First, Model 9 makes significantly more accurate predictions than the 

widely practiced benchmark B0. Incorporating market information (Liv-ex 100 index) improves the 

performance by 20.97% and barrel scores by another 3.17%. Changing the variable definition prompts an 

improvement of 3.65% and the interaction term adds another 0.55% performance boost.  
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Vintage 
Mean Absolute % Error 

Model B0 Model B1 Model B2 Model 7 Model 9 
2015 38.20% 18.57% 16.10% 10.12% 12.74% 
2016 45.79% 21.24% 16.20% 12.29% 11.42% 
2017 34.38% 15.66% 13.66% 12.61% 9.19% 

Average 39.46% 18.49% 15.32% 11.67% 11.12% 
Δ Liv-ex 100 (B0 – B1) 20.97%    

Δ barrel score (B1 – B2)  3.17%   
Δ variable definition (B2 – 7)   3.65%  
Δ positive interaction (7 – 9)    0.55% 

Table 2.3. Out-of-sample testing results of models B0, B1, B2, 7 and 9 in Hekimoğlu and Kazaz (2020). 
 

A comprehensive robustness analysis is presented in the online supplement. The Lasso analysis is a 

popular machine learning methodology for variable selection. Analyzing 33 independent variables leading 

to 233 = 8,589,934,592 independent models, the analysis confirms that the optimal set of variables is the 

set of variables featured in Model 9. Using quantile regression, robust regression, hierarchical linear 

modeling, the hierarchical Bayes model, parametric and non-parametric variable transformations, 

robustness tests show the extraordinary accuracy of this predictive model. As a result, Liv-ex has decided 

to publish the estimated prices of Model 9 as “realistic prices.” Realistic prices provide transparency in 

the wine industry: Buyers can now determine whether a wine is underpriced or overpriced.  

Improving the performance of price estimations would build additional investor confidence in wine 

futures. A higher number of participants in the futures market would improve the efficiency of the 

financial exchange. Future research should construct additional predictive analytics for other wine 

producing regions. This is particularly important in the US wine industry where there is no financial 

exchange to trade wine futures even though many offer it through wine club memberships (e.g., Harlan 

Estate, Hawkes, Far Niente Group’s Nickel & Nickel). As a result, winemakers rely primarily on their 

direct-to-consumer channels. This can be seen in McMillan (2020) where a winery’s financial 

sustainability is measured in terms of the size of its direct-to-consumer channel. In the absence of a 

financial exchange, when a winemaker goes bankrupt, the financial institution receives priority in taking 

possession of the existing inventory of wines. Thus, club members who paid the winemaker in advance 

may not receive their wines. In sum, establishing a financial exchange would be beneficial for protecting 

their investments in futures; it would incentivize more people to participate in wine futures trade.  

3. The Supplier: Winemaker 
Winemakers who focus on producing premium quality wines take a substantial risk with the long 

production times with 18 to 24 months before the wine is bottled. It is easy to see that monetary 

investment is tied up in this liquid for a long time. To combat the risks in the value during the production 
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process, French winemakers have always sold premium wines in the form of wine futures. This risk-

mitigation technique corresponds to the popular advance selling mechanism in marketing and to the 

inventory financing mechanism in supply chain finance. Section 2 developed a predictive analytics model 

that determined the value of the wine futures contracts. In this section of the tutorial, we develop a 

prescriptive model that helps winemakers endogenize the pricing decision and determine the amount of 

wine to be sold in advance in the form of futures contracts.  

Noparumpa et al. (2015) develop predictive and prescriptive analytics approaches in order to manage 

the risks in the long production process. To help mitigate risks, their study develops a prescriptive 

analytical method that relies on a multinomial logit (MNL) model. The winemaker makes two critical 

decisions at the half point of the aging process, i.e., when the wine is still in the barrel: (1) What 

proportion of the wine should be sold in advance in the form of wine futures and what proportion of the 

wine should be kept for retail sales? And, (2) what should be the price of wine futures contracts? The 

latter decision sets an expectation about the retail price upon bottling. In this MNL model, consumers can 

purchase the wine at two different points in time: Either as a wine futures contract while the wine 

continues to age in the barrel or at retail after the wine is bottled.  

Tasting experts review premium wines at two points in time: first when the wine is still aging in the 

barrel (and before it is offered to the public in the form of wine futures), and second when the wine is 

bottled and distributed for retail sales. Each time, the review will be a score given out of 100 points.2 The 

first review is the “barrel score” and is denoted s1; the wine is still aging in the barrel at this time. The 

second review is called the “bottle score” and is denoted by 2s  representing the randomness as it takes 

place in a future time period, i.e., after the wine is bottled. The barrel scores are published before the wine 

is offered in the form of wine futures and we already established the fact these barrel scores influence the 

price of wine futures. For example, when the most influential tasting expert Robert Parker provided his 

almost perfect score for the 2008 Lafite Rothschild, the price of wine futures jumped approximately 50 to 

75% in value.  

The MNL model describes consumers’ valuation in terms of three decision options:  

(1) Purchase the wine in advance of bottling and in the form of wine futures (at time epoch t1);  

(2) Wait for a year and purchase the wine after it is bottled at an unknown retail price (at time epoch t2);  

(3) Not purchase the wine.  

The average valuation of a wine future at the time it is offered to the public is influenced by three 

factors: (a) the expectation from the unknown bottle score which is often assumed to be equal to the barrel 

score, i.e., [ ]2 1E s s= ; (b) the variation in the bottle score σ; and, (c) the risk-free rate rf that indicates the 

 
2 There are a few tasting experts who provide scores out of 20, e.g., Jancis Robinson.  
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time-value-of-money from paying today and receiving the product a year later. Note that the weather 

information during the growing season is already revealed at this time; it is not random anymore.  

We denote the average consumer value from a future under bottle-score uncertainty with vf and 

employ a Conditional Value at Risk (CVaR) framework to determine its value. For a given ξ ∈ (0, 1], 

let z(ξ) = G-1(ξ) describe the ξ th percentile of the bottle score, i.e., s2(ξ) = s1 + z(ξ)σ. The valuation of 

wine futures by an average consumer is equal to the conditional expected value of the bottle score 

discounted to time t1 at the risk-free rate, i.e.,  

vf = ( ) ( )1

2 1 2 21 | ,fr E s s s s ξ
−

+  ≤    = ( ) ( )( )1

11 |fr s E z z z σξ
−

+ − − ≤    = ( ) ( )1

11 fr s γσ
−

+ −  

where γ = ( )|E z z z ξ− ≤     represents a measure of sensitivity to uncertainty in bottle score. Note that γ is 

decreasing in ξ, γ ≥ 0 (due to E[ z ] = 0), and γ = 0 when ξ = 1. Then, vf can be written as vf = θ s1 

where θ = (1 + rf)-1(1 – γ(σ/s1)) is the risk-adjusted discount factor. Note that in this definition of 

consumers’ risk-adjusted discount factor, the risk-free discount factor ((1 + rf)-1) is reduced by the 

uncertainty in the bottle score (γ) and the coefficient of variation of the bottle score (σ/s1). The valuation 

of a wine future by a random consumer is then Vf = vf + εf = θ s1 + εf where εf is a random variable with 

E[εf] = 0. The utility of a future is equal to the consumer surplus, i.e., the difference between valuation 

and price, Uf = Vf – pf = θ s1 + εf – pf. The average utility of a future among consumers can be written as uf 

= E[Uf] = θ s1 – pf.  

One can observe that the utility from purchasing the wine in the form of a wine futures contracts is 

increasing in the expected bottle score (s1) and is decreasing in price (pf), the uncertainty in bottle score 

(σ), the risk-free discount rate (rf), and risk aversion (γ). 

A consumer who does not purchase the wine in the form of a wine future has two choices at the time 

that the wine is bottled: (1) purchase the wine at the unknown retail price ( )2 1|rp s s = 2s  at time t2;  or, (2) 

do not purchase it. The average utility of a retail purchase choice among consumers is the difference 

between the expected valuation and the expected price discounted by the risk-adjusted discount rate, i.e., 

is ur = [ ] ( )( )2 1 2 1| |rE s s E p s sθ −     = 0 and the random utility is Ur = εr where εr is a random variable 

with E[εr] = 0. The average utility of the no purchase option is zero and the random utility is U0 = ε0. The 

utility of not purchasing a wine future in the first time epoch is the maximum utility among the two no-

purchase alternatives, i.e., max{Ur, U0} = max{εr, ε0}.  

We next derive the purchase probability for wine futures considering that a consumer selects the 

alternative with the highest utility. The fraction of consumers who purchase the wine in the form of wine 

futures is { }0max ,f rP U U U >  = { }0 1max ,r f fP s pε ε ε θ − < −  . Assuming that εf, εr, and ε0 are i.i.d. 
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Gumbel random variables with zero mean and scale parameter β, max{εr, ε0} is a Gumbel random 

variable with E[max{εr, ε0}] = βln2 and scale parameter β (because the Gumbel distribution is closed 

under maximization), max{εr, ε0} – εf  is a logistic random variable (because the difference between two 

independent Gumbel random variables with the same scale parameter is a logistic random variable). Thus, 

the futures purchase probability conforms to the multinomial logit (MNL) model: 

{ }0max ,f rP U U U >  =
( )

( )

1

1

/

/2

f

f

s p

s p

e

e

θ β

θ β

−

−+
=

( ) ( )

( ) ( )

1
1

1
1

1 /

1 /
2

f f

f f

r s p

r s p

e

e

γσ β

γσ β

−

−

 + − − 
 

 + − − 
 +

. 

MNL models are commonly used in retail settings. What sets wine apart from a traditional retail good 

is that the market size increases/decreases with higher/smaller barrel scores. Let us describe this market 

size as a non-decreasing function of the barrel score s1 and denote it with M(s1) where M ′(s1) ≥ 0. 

Individuals will purchase a wine futures contract only when it provides the highest utility, i.e.,  

( ) ( ) { } ( ) ( ) ( )( )1 1/ /
1 0 1max , / 2f fs p s p

f f f rq p M s P U U U M s e eθ β θ β− −  = > = +    
.    (3) 

Inverting (3) allows us to write the futures price as a function of quantity: 

( ) ( )( )1 1ln / 2f f f fp q s M s q qθ β  = + −  .       (4) 

The winemaker’s risk-adjusted discount factor is denoted with φ and its value reflects the risk of 

selling a bottle of wine at an uncertain retail price in the future. The higher the uncertainty of the bottle 

price and the more risk-averse the winemaker, the lower the value of φ.  

A predictive analytics method relying on a Capital Asset Pricing Model (CAPM) can be employed in 

order to estimate the risk-adjusted discount factor for a winemaker. The estimate of the value of φ can 

then be used to solve the prescriptive analytical model for the winemaker. In this approach, let us describe 

the winemaker’s risk-adjusted discount factor with φ = (1+ rf  + γ (rm – rf))-1 where rm is the market return. 

For the international wine companies, it is appropriate to use the average annual percentage change in the 

Liv-ex 100 index as the market return rm. Then, rm – rf is the risk premium. The value of γ representing 

the winemaker’s risk measure can be estimated through a CAPM approach using γ = COV(rj, rm)/VAR(rm) 

which represents the covariance between the returns of the specific winemaker (rj) and the market returns 

(defined as COV(rj, rm)) divided by the variance in market returns (defined as VAR(rm)).  

The winemaker’s risk-adjusted expected profit can then be expressed as follows: 

( )fqΠ = ( ) ( ) ( )2 1|f f f r fq p q E p s s Q qφ+   −  = ( ) ( )1
1 1ln

2
f

f
f

M s q
q s s Q

q
θ φ β φ

  −
− + +      

 (5) 

and the winemaker’s objective function maximizes the above risk-adjusted expected profit function:  
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( )* max
f

fq Q
qρ

≤
= Π .          (6) 

The above derivations help in developing the expressions for the optimal values of the expected 

profit ρ*, the optimal amount of wine to be sold in the form of wine futures qf
*, and the optimal 

futures price pf
*. These expressions rely on the Lambert W function W(z) (Corless et al. 1996); W(z) is 

the value of w satisfying z = wew. Let us describe the winemaker’s total production amount with Q. 

The optimal fraction of the market that will buy the wine in the form of wine futures is then equal to 

αo = 
( )

( )
( )

( )/ /1 1

1 1/ /
2 22

s se es W s W
e ee e e

θ φ β θ φ β
θ φ β θ φ β

− −   
   − − − −
   
   

 
 +  
 

 when the supply constraint is nonbinding, i.e., 

when Q ≥ M(s1)αo. The optimal solution for a MNL model using consumers’ CVaR perspective and 

winemakers’ risk-adjusted profits is characterized in Table 3.1:   

 

Production is nonbinding, i.e., Q ≥ M(s1)αo Production is binding, i.e., Q < M(s1)αo 

qf
* = M(s1)αo 

pf
* =

( ) 1 /

1 1
2

ses W
e

θ φ β

φ β
−  

+ +      
 

ρ* = ( )
( )

( )
1 /

1 1
12

se QM s W s
e M s

θ φ β

β φ
−  

+      
 

qf
* = Q 

pf
* = ( )1

1 ln
2

M s Q
s

Q
θ β

 − 
+  

 
 

ρ* =
( )1

1 ln
2

M s Q
Q s

Q
θ β
  − 

+     
 

Table 3.1. The optimal solution of the MNL model based on the winemaker’s production amount. 
 

Noparumpa et al. (2015) estimate empirically that Bordeaux chateaus increase their futures allocation 

by an average of 27.65% due to the risks stemming from uncertainty in the bottle reviews and retail 

prices. It is also estimated that the model improves their expected profits by an average of 10.10%.  

In Section 2, we estimated the realistic price, i.e., the ex-négociant price, at which the futures contract 

should be released to the financial exchange Liv-ex. Let ˆ fp  denote the ex- négociant price estimate. Let 

δ represent the négociant’s margin; thus, the winemaker’s realistic earning is ˆ fp – δ. Consider the case 

when production is not binding, i.e., Q ≥ M(s1)αo and ( )( )1 /
1 1 2ss W e eθ φ βφ β − + +   > ˆ fp – δ. This case 

implies that the winemaker’s optimal price choice is greater than the estimated realistic earning. It tells 

the winemaker that this price can potentially create a problem in terms of the winemaker’s estimate of the 

demand function derived from the MNL model. In this case, the winemaker is recommended to reduce the 

futures price to pf
* = ˆ fp – δ; the amount of futures contracts qf(pf) that the winemaker should expect to 

sell can be obtained by substituting pf
* = ˆ fp – δ in (3).  
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In the US, winemakers are not required to grow their grapes in their own estates like the French 

winemakers. The US winemakers lease vineyards in order to secure the supply of grapes and control the 

quality of their agricultural input. The above MNL model can easily be extended in order to determine the 

optimal amount of a vineyard lease for such winemakers. Incorporating the MNL-based prescriptive 

model into the leasing decisions enables winemakers to grow their businesses without requiring a 

substantial amount of capital, and thus, in a financially healthier manner.  

Boutique and artisanal winemakers in the US exhibit significantly more risk averse behavior than 

Bordeaux chateaus. These small winemakers often possess a smaller amount of cash and operate under 

higher financial uncertainty. Thus, the estimates for the risk-adjusted discount factors for these boutique 

and artisanal winemakers in the US are substantially greater than those of Bordeaux chateaus. This 

implies that the value from selling wine in advance in the form of wine futures is significantly more 

valuable to boutique and artisanal winemakers of the US than the Bordeaux chateaus. Noparumpa et al. 

(2015) estimates empirically that one such winemaker, Heart and Hands Wine Company, would increase 

its wine futures allocation by an average of 55.03% and improve its expected profits by an average of 

13.87%.  

Noparumpa et al. (2015) show that winemakers benefit from selling wine in the form of wine futures. 

Will the buyers of wine futures, distributors and importers, lose if they engage in wine futures?  

4. The Buyer: Distributor and Importer 
This section develops a prescriptive analytics model that helps wine distributors determine the investment 

allocation between wine futures and bottled wine. Hekimoğlu et al. (2017) examine how the prices of 

wine futures and bottled wine are influenced by randomness in weather and market conditions. The 

predictive analytics framework in their publication provides the necessary empirical foundation for the 

functional forms that will be used in the prescriptive model. Every May of calendar year t, a distributor 

can buy wine futures of vintage t – 1 and bottled wines of vintage t – 2 from each winemaker. How much 

money should the wine distributor invest in the wine futures of vintage t – 1 and how much money should 

she allocate to the bottled wines from vintage t – 2? In order to decide, the wine distributor needs to 

predict the price evolution of wine futures and bottled wine from May of calendar year t to May of 

calendar year t + 1. The online supplement presents the details of the predictive analytics models that 

estimate the evolution of prices for wine futures and bottled wine. Figure 4.1 illustrates the evolution of 

realized futures and bottle prices over time.  
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Figure 4.1. The evolution of futures and bottled wine prices under weather and market uncertainty.  

  

We denote weather fluctuations with random variable w  and its realization with w, and market 

fluctuations with random variable m  and its realization with m. The predictive analytics study establishes 

the functional forms of futures and bottled wine prices in our analytical model as functions of w and m.  

The predictive analysis presented in the online supplement shows that futures prices are negatively 

influenced by the new weather information: The value of f2
 decreases from f1

 with better weather 

information designated by a positive value of w; and the value of f3 further decreases (with a larger 

coefficient) from f2 with a positive value of w. Futures prices improve with better market conditions: The 

value of f2 increases from f1 with better market information designated by a positive value of m; and, the 

value of f3 further increases (with a larger coefficient) from f2 with a positive value of m. The predictive 

analysis pertaining to the bottled wine prices shows that the next vintage’s weather information does not 

influence the evolution of bottled wine prices because the coefficient of w is not statistically significant in 

the price evolution from b1 to b2 or from b2 to b3. Market information positively impacts the evolution of 

bottled wine prices: The value of b2 increases from b1 with a positive value of m; and, the value of b3 

further increases (with a larger coefficient) from b2 with a positive value of m. From the analysis of the 

predictive analytics model, Hekimoğlu et al. (2017) define the following:  

∂f2(w, m)/∂w < 0 and ∂f3(w, m)/∂w < 0 (because of the negative coefficients), with 

∂f3(w, m)/∂w < ∂f2(w, m)/∂w < 0 (because of the greater value of coefficients in later periods); and 

∂f2(w, m)/∂m > 0 and ∂f3(w, m)/∂m > 0 (because of the positive coefficients), with 

∂f3(w, m)/∂m > ∂f2(w, m)/∂w > 0 (because of the greater value of coefficients in later periods); and, 

∂b2(m)/∂m > 0 and ∂b3(m)/∂m > 0 (because of the positive coefficient), with 

∂b3(m)/∂m > ∂b2(m)/∂m > 0 (because of the greater value of coefficients in later periods).  

4.1. The Prescriptive Model for the Buyer 
Distributors often have a dedicated budget, denoted B, for each winemaker. The question is: How much 

of that money should be allocated into wine futures (of vintage t – 1) versus bottled wine (of vintage t – 

2)? A two-stage stochastic program with recourse provides the optimal decisions.  

Stage 1 (May of year t): The distributor determines the optimal values of 

x1:  the amount of money to be invested in the wine futures of vintage t – 1, and 



21 
 

y1:  the amount of money to be invested in the bottled wine from vintage t – 2 

within the limited budget of B and under risk aversion. Wine distributors exhibit risk aversion that 

conforms to the Value at Risk (VaR) measure where they try to limit the amount of loss with an 

associated probability. We denote the unit prices of wine futures and bottled wine with f1 and b1 and 

normalize their values to f1 = b1 = 1. We normalize the means of the two random variables w  and m  to 

zero, i.e., E[ w ] = E[ m ] = 0. Their probability density functions (pdf) are denoted ϕw(w) and ϕm(m) on 

respective support [wL, wH] and [mL, mH]. We define the set Ω = [wL, wH] × [mL, mH]. 

Stage 2 (September of year t): After observing the realizations for weather and market fluctuations (w, m) 

in September of year t, the distributor determines the optimal values for  

x2:  the amount of additional money to be invested in the wine futures of vintage t – 1, and 

y2:  the amount of additional money to be invested in the bottled wine from vintage t – 2. 

Note that the distributor can sell some of the futures purchased in stage 1 in May, and thus, the value of x2 

can be negative. The unit price for wine futures is f2(w, m) and for bottled wine is b2(m).  

The returns from wine futures and bottled wine at the end of stage 2 (May of year t + 1) is also 

uncertain; they are described by random variables ( , )f bz z   and their mean values are E[ fz ] = E[ bz ] = 0. 

The realized prices at the end of stage 2 are described as f3(w, m) + zf and b3(m) + zb. Thus, E[f3(w, m) + 

fz ] = f3(w, m) and E[b3(m) + bz ] = b3(m).  

From the analysis of the predictive models, note that when the futures and bottle prices move in one 

direction in the evolution from f1 to f2(w, m) and from b1 to b2(m), then often they also evolve in the same 

direction from f2(w, m) to f3(w, m) + zf  and from b2(m) to b3(m) + zb. As a result, we assume: 

If f2(w, m) ◊ f1 , then E[f3(w, m) + fz ] ◊ f2(w, m) for all ◊ ∈ {>, =, <} and for all (w, m).  (7) 

If b2(m) ◊ b1 , then E[b3(m) + bz ] ◊ b2(m) for all ◊ ∈ {>, =, <} and for all m.   (8) 

The realized profit at the end of stage 2 can be written as:  

∏(x1, y1, w, m, x2, y2, zf, zb)  

= – x1 – y1 – f2(w, m)x2 – b2(m)y2 + [f3(w, m) + zf](x1 + x2) + [b3(m) + zb](y1 + y2).   (9) 

The stage 2 model can be expressed as follows:  

( )
2 2

1 1 2 2,
max , , , , , , ,f bx y

E x y w m x y z z Π           (10) 

subject to 

f2(w, m)x2 + b2(m)y2 ≤ B – x1 – y1                            (11) 

( )1 1 2 2, , , , , , ,f bx y w m x y zP z β α Π < − ≤          (12) 

x2 ≥ ‒ x1                      (13) 
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y2 ≥ 0                  (14) 

Inequality (11) is the second-stage budget constraint; the distributor can use the remaining budget from 

stage 1 in addition to the money generated through the sale of futures in stage 2 (when x2 < 0). Inequality 

(12) is the second-stage VaR constraint; the probability of realized profit less than – β should not exceed 

α. Inequality (13) indicates that the distributor cannot sell more futures in stage 2 than the amount 

purchased in stage 1. For given x1, y1, w, m, we let (x2
*, y2

*) denote the optimal solution, i.e.,  

( ) ( )( )* *
2 1 1 2 1 1, , , , , , , , ,x x y w m y x y w m   = ( )

2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z Π  
 s.t. (11) – (14).  

We can define zfα and zbα as the realizations of fz  and bz  at fractile α, i.e., f fP z z α ≤  = [ ]b bP z z α≤ = 

α and assume that zfα < 0 and zbα < 0 implying that the distributor is worried about the negative returns at 

the end of stage 2. Distributors often invest only in bottled wine; therefore, it is practical to assume that 

the VaR constraint is satisfied in the event the distributor invests the entire budget on bottles, i.e.,  

(1 – b3(mL) – zbα)B < β.          (15) 

The stage 1 model selects x1 and y1 that maximize the expected profit: 

( ) ( )( )
1 1

* *
1 1 2 1 1 2 1 1, 0

max , , , , , , , , , , , , ,f bx y
E x y w m x x y w m y x y w m z z

≥
 Π                       (16) 

subject to 

x1 + y1 ≤ B                 (17) 

( ) ( )( )* *
1 1 2 1 1 2 1 1, , , , , , , , , , , , ,f bP x y w m x x y w m y x y w m z z β α Π < − ≤    for all (w, m) ∈ Ω   (18) 

Inequality (17) is the budget constraint. Inequality (18) is the VaR constraint under a time-consistent risk 

measure (e.g., see Boda and Filar 2006). Some (x1, y1) decisions may satisfy the VaR constraint in stage 1 

but violate it in stage 2; these decisions become infeasible in the model. To examine whether a distributor 

should invest in futures, it is appropriate to assume equal and positive returns at the end of stage 2:  

E[f3( ,w m  ) + fz ] = E[b3( m ) + bz ] > 1.        (19) 

4.2. Analysis of the Prescriptive Model 

Partitioning the state space for ( ),w m   allows us to identify when the distributor would (1) sell futures, (2) 

buy futures, and (3) sell futures in order to buy bottles. 

Ω0 = {(w, m) ∈ Ω : f3(w, m)/f2(w, m) = b3(m)/b2(m) = 1} 

Ω1 = {(w, m) ∈ Ω : f3(w, m)/f2(w, m) < 1 and b3(m)/b2(m) < 1} 

Ω2 = {(w, m) ∈ Ω : f3(w, m)/f2(w, m) ≥ max{b3(m)/b2(m), 1} \ Ω0} 

Ω3 = {(w, m) ∈ Ω : b3(m)/b2(m) ≥ max{f3(w, m)/f2(w, m), 1} ∪ Ω0}. 
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Let us define the equilibrium points as mτ where b3(mτ)/b2(mτ) = 1 and f3(0, mτ)/f2(0, mτ) = 1, wτ(m) where 

f3(wτ(m), m)/f2(wτ(m), m) = 1 for m ≤ mτ, and wτ
- = wτ(mL). Note that  

mτ < 0, wτ(m) < 0 for all m < mτ, and wτ(mτ) = 0 (follows from (7), (8), (19)).   (20) 

We assume that  

mτ > mL and wτ(mL) > wL.         (21) 

The set Ω0 identifies the set of realizations where the distributor is indifferent between wine futures and 

bottled wine. The set Ω1 defines realizations where it is best to sell the futures purchased in stage 1 and 

without buying bottled wine. The set Ω2 defines realizations where it is best to buy additional futures if 

there is any money left from the stage 1 investments. The set Ω3 defines realizations where it is best to 

sell the futures and buy bottles instead; this set of realizations shows the benefits of the liquidity from 

purchasing wine futures in stage 1.  

It is useful to solve the risk-neutral version of stage 2 before analyzing risk aversion. This is 

accomplished by relaxing the VaR constraint in (12); we denote its solution as ( )0 0
2 2,x y  where 

( ) ( )( )0 0
2 1 1 2 1 1, , , , , , ,x x y w m y x y w m  = ( )

2 2

1 1
,

2 2, , , , ,ar ,g max , f
y

b
x

x y w m x yE z z Π  
 s.t. (11), (13), (14). 

Then, it can be seen that ( )0 0
2 2,x y  is given as follows: 

( )0 0
2 2,x y =

( ) ( )
( ) ( )( ) ( )

( )( ) ( )( ) ( )

1

1 1 2

1 1 1 2 1 2

,0                                                      if , 1
, ,0                       if , 2

, ,   if , 3

x w m
B x y f w m w m
x B x y f w m x b m w m

 − ∈Ω


− − ∈Ω
 − − − + ∈Ω

,  (22) 

Assuming that the bottled wine is more profitable than holding cash in stage 1, i.e.,  

( )
( ) ( )1 1

0 0
1 1 2 2 1

, 0,0
, , , , , , ,f b

x y
E x y w m x y z z y

=
 ∂ Π ∂     > 0      (23) 

the following proposition shows that buying futures is even more profitable. Thus, for any (x1, y1), 

( )0 0
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

 ∂ Π 
∂

   

≥
( )0 0

1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

 ∂ Π 
∂

   

 > 0.    (24) 

Wine futures are advantageous because of the additional flexibility that they offer liquidity, i.e., being 

able to sell futures after observing weather and market random variables, and even swap them for bottles. 

Thus, a risk-neutral buyer would invest all budget in futures. The expected profit increases: (a) in the 

variation in market fluctuations in all cases; and, (b) in the variation of weather only when it increases the 

value from liquidity and swapping. Let us define the following for the risk-averse buyer:  
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x1
+ = β/[1 – f2(wH, mL)]; x1

V = [β + zbα B]/([1 – f2(wH, mτ)][1 + zbα]); x1
s = (β – B[1 – b3(mL) – zbα])/[b3(mL) 

+ zbα – f2(wH, mL)]; y1
V = [β – [1 – f2(wH, mL)]x1

V]/[1 – b3(mL) – zbα] and y1
s = (B[1 – f2(wH, mL)] – 

β)/[b3(mL) + zbα – f2(wH, mL)]. Moreover, let 

– zfα < β/B            (25) 

( )
( ) ( )

( )
( ) ( )

1 1

1 1

0 0
1 1 2 2 1

, 0,0

0 0
1 1 2 2 1

, 0,0

, , , , , , , /

, , , , , , , /

f b
x y

f b
x y

E x y w m x y z z y

E x y w m x y z z x
=

=

 ∂ Π ∂ 

 ∂ Π ∂ 

   

   

 < ( )
( )

3

2

1
1 ,

L b

H L

b m z
f w m

α− −
−

.    (26) 

The values of x1
+, x1

V and y1
V are determined at various (w, m) pairs that bind the VaR constraint in 

(18). The values of x1
s and y1

s are obtained when the VaR constraint (18) intersects with the budget 

constraint (17); note that x1
s is strictly smaller than x1

+ when x1
+ < B. Inequality (25) states that investing 

the entire budget in futures in stage 2 at point (wτ
-, mL), the point at which the distributor switches to 

buying additional futures, does not violate the VaR constraint in (12). Inequality (25) is a weaker 

assumption than (15). Unlike (15), inequality (25) allows the possibility that investing the entire budget in 

futures in stage 1 can violate the VaR constraint in (18). In sum, the comparison of (25) with (15) reveals 

that there is greater uncertainty in the randomness in futures prices than that in bottle prices. Inequality 

(26) states that wine futures is preferred at the worst realizations of weather and market random variables.  

It can be shown that it is always optimal to invest in some futures because *
1x > 0 in all conditions. 

When (25) holds and ( ),f bz z   follow a bivariate normal distribution, the optimal solution is as follows:  

(a) If {x1
+, x1

V} ≥ B, then (x1
*, y1

*) = (B, 0) and (x2
*, y2

*) = (x2
0, y2

0);  

(b) If x1
V < B ≤ x1

+, then (x1
*, y1

*) = (x1
V, B – x1

V) and (x2
*, y2

*) = (x2
0, y2

0); 

(c) If x1
+ < {x1

V, B}, then  

(i) if (26) holds, then (x1
*, y1

*) = (x1
+, 0) and (x2

*, y2
*) = (x2

0, y2
0); 

(ii) if (26) does not hold, then (x1
*, y1

*) = (x1
s, y1

s) and (x2
*, y2

*) = (x2
0, y2

0); 

(d) If x1
s < x1

V ≤ x1
+ < B, then 

(i) if (26) holds, then (x1
*, y1

*) = (x1
V, y1

V) and (x2
*, y2

*) = (x2
0, y2

0); 

(ii) if (26) does not hold, then (x1
*, y1

*) = (x1
s, y1

s) and (x2
*, y2

*) = (x2
0, y2

0); 

(e) If x1
V ≤ x1

s < x1
+ < B, then (x1

*, y1
*) = (x1

V, B – x1
V) and (x2

*, y2
*) = (x2

0, y2
0). 

While it is optimal to invest in some futures all the time, it is not necessarily optimal to invest in 

bottles all the time as shown in (a) and (c)(i) above. The conclusion to always invest in some futures holds 

true even in the presence of a higher degree of uncertainty in futures and bottled wine and even if ( ),f bz z   

do not follow a bivariate normal distribution as specified in (25). When ϕw(w) follows a symmetric pdf 

and ( ),f bz z   follow a bivariate normal distribution, 
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( )* *
1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

x

 ∂ Π 
∂

   

≥
( )* *

1 1 2 2

1

, , , , , , ,f bE x y w m x y z z

y

 ∂ Π 
∂

   

 > 0.    (27) 

In conclusion, the distributors are recommended to invest in wine futures despite the fact that wine 

futures exhibit a higher degree of risk than purchasing bottled wine.  

4.3.  Financial Benefits from the Predictive and Prescriptive Models  
We next present the financial benefits of the distributor’s model using the Bordeaux chateaus employed in 

the analysis in Section 2. The evolution of futures prices for the 2010 and 2011 vintages are estimated 

from vintages 2007, 2008 and 2009. Similarly, the evolution of bottled wine prices for the 2009 and 2011 

vintages are estimated from vintages 2006, 2007 and 2008. In May of 2011, the distributor can purchase 

the futures of the 2010 vintage or bottled wine of the 2009 vintage. At this time point, the distributor 

knows the actual futures and bottle prices (f1 and b1, respectively) for each winemaker. Similarly, in May 

of 2012,  the distributor can purchase the futures of the 2011 vintage or bottled wine of the 2010 vintage. 

Using the coefficient estimates from the predictive analytics models, the evolution of futures and bottled 

wine prices are estimated for September of 2011 and 2012 (i.e., f2(w, m) and b2(m)) and May of 2012 and 

2013 (i.e., f3(w, m) + zf and b3(m) + zb) for given realizations of all four random variables. The analysis 

here relaxes the earlier assumption that wine futures and bottled wine have equal expected returns as in 

(19). The distributor’s tolerable loss is designated as 20% of the budget, i.e., β = 0.2B. Risk aversion is 

captured at α ∈ {1, 0.20, 0.10}; α = 1 corresponds to a risk-neutral distributor, whereas α = 0.20 and α = 

0.10 represent low and high risk aversion, respectively. The results are independent of the choice of B 

which is set to B = 10,000. E[Π1
j,t(x1

*, y1
*)] denotes the optimal profit coming from winemaker j with 

futures and bottled wine in year t and E[Π1
j,t(0, y1

**)] is the expected profit from the  current practice of 

investing only in bottled wine with no investment in futures, i.e., (x1, x2) = (0, 0). The financial benefit 

from the prescriptive model is: 

Δj,t = (E[Π1
j,t(x1

*, y1
*)] – E[Π1

j,t(0, y1
**)])/E[Π1

j,t(0, y1
**)].       (28) 

Table 4.1 summarizes the financial benefits with the average benefit j∆ = (1/2)∑t(Δj,t) for each winemaker 

at different levels of risk aversion. The average financial benefit for all chateaus is 35j
j

∆ = ∆∑ .  

Even the largest risk-neutral distributors would benefit significantly from investing in wine futures. 

The average expected profit improvement is estimated to be 17.83% with the largest improvement at 

55.74% at Lafleur. The financial benefits increase in the presence of risk aversion: The average profit 

improvement is 19.46% for low risk aversion and 20.53% for high risk aversion; however, the 

improvement is not always monotone in risk aversion (see the decrease in Conseillante as an example).   

Let f1
jr denote the estimated realistic price for wine futures, corresponding to the initial release price, 

for chateau j from the analysis described in Section 2. Recall that the actual release price f1
j can be greater 
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than the estimated release price f1
r; we argued earlier that these futures contracts are not desirable for the 

buyer. Among the 35 chateaus and two vintages, 39 of the initial release prices out of 70 futures prices 

(for vintages 2010 and 2011) are overpriced; this means that the actual release price is greater than the 

estimated realistic price, i.e., f1
j > f1

jr. For some of these overpriced futures prices, the appreciation over 

time can still make it an attractive investment especially when f1
j evolves to f2

j and f3
j. For the 39 

overpriced futures releases (with f1
j > f1

jr), the average benefit is only 5.24%. The benefit is not equal to 

zero because some futures contracts continue to appreciate at greater levels over time. Let us now 

compare this gain with the truly attractive – and underpriced – futures contracts where the release price is 

below the estimated realistic price, i.e., f1
j < f1

jr. From the 34 underpriced futures contracts in the sample, 

the average financial benefit is 33.05%. The analysis confirms our earlier assertion that underpriced 

futures are substantially more beneficial for the wine distributor than the overpriced futures. Realistic 

prices provide valuable insights for the wine distributor’s purchasing decisions.  

 

Winemaker (j) 

Risk 
Neutral 

j∆  

Low Risk  
Aversion 

j∆  

High Risk  
Aversion 

j∆  Winemaker (j) 

Risk 
Neutral 

j∆  

Low Risk  
Aversion 

j∆  

High Risk  
Aversion 

j∆  

Angelus 4.45% 7.40% 10.00% Leoville Barton 18.63% 18.63% 21.58% 

Ausone 48.33% 53.18% 54.32% Leoville Las Cases 28.20% 24.78% 25.92% 

Beychevelle 0.00% 0.00% 0.00% Leoville Poyferre 36.72% 23.82% 23.39% 

Calon Segur 1.88% 1.88% 1.88% Lynch Bages 20.97% 20.97% 20.97% 

Cheval Blanc 29.71% 34.44% 36.89% Margaux 31.84% 50.52% 53.81% 

Clos Fourtet 38.92% 38.96% 39.30% Mission Haut Brion 4.75% 12.99% 12.62% 

Conseillante 10.69% 5.95% 5.35% Montrose 14.90% 14.07% 17.98% 

Cos d'Estournel 36.04% 31.53% 31.99% Mouton Rothschild 10.93% 20.65% 22.62% 

Ducru Beaucaillou 0.00% 2.30% 4.33% Palmer 0.00% 0.00% 0.00% 

Duhart Milon 10.35% 8.94% 12.74% Pavie 24.46% 25.99% 28.53% 

Eglise Clinet 6.64% 21.90% 21.71% Pavillon Rouge 5.00% 5.00% 5.00% 

Evangile 14.48% 33.16% 34.81% Petit Mouton 3.69% 3.69% 3.69% 

Grand Puy Lacoste 25.13% 26.18% 27.41% Pichon Baron 17.06% 17.06% 17.06% 

Gruaud Larose 7.34% 7.34% 7.34% Pichon Lalande 10.29% 5.85% 7.49% 

Haut Bailly 1.38% 1.38% 1.38% Pontet Canet 10.44% 10.44% 10.44% 

Haut Brion 9.91% 11.94% 14.32% Troplong Mondot 32.24% 31.29% 31.21% 

Lafite Rothschild 22.06% 43.32% 47.28% Vieux Chateau Certan 21.33% 29.73% 31.83% 

Lafleur 55.74% 35.73% 33.29%     
Risk Neutral       Low Risk Aversion      High Risk Aversion 

                                               ∆                             ∆                              ∆  
                        Average          17.83%                      19.46%                       20.53% 

Table 4.1. The average financial benefit to the wine distributor from the model.  



27 
 

A distributor may hold on to a greater amount of cash in under risk aversion. But, the presence of 

futures and its attractiveness with liquidity causes the distributor to increase early spending. In the 

absence of futures, the firm may hold excess cash, i.e., y1
** < B/b1. When futures are incorporated into the 

prescriptive model, the firm may invest more in stage 1 (i.e., f1x1
* + b1y1

* > b1y1
**) which leads to a greater 

average improvement than that for a risk-neutral distributor where f1x1
* + b1y1

* = b1y1
** = B. Collectively, 

it can be concluded that wine futures is increasingly beneficial for risk-averse distributors. Note that the 

distributor’s profit can be further improved by considering a single budget for all chateaus; this 

adjustment can recommend carrying only a few chateaus. However, this approach is not always desirable 

for distributors because the business model requires that they carry wine from almost all chateaus.  

5. Future Research Directions 
Research in wine analytics will continue to contribute to the practice of winemaking and distribution. We 

offer a list of future research directions where analytical methods would benefit wine enterprises. 

Climate Change. Wine is especially sensitive to climate change. The intensely warmer summers 

during the growing seasons cause the grapes to ripen faster with higher levels of sugar that converts to a 

higher level of alcohol. Wines from Central California often feature alcohol levels close to 16% in 

comparison to 13.5% often seen in Bordeaux. Investigating climate change impact on wine production 

might require a multi-faceted study on the choice of grape varietals that are resistant to hot summer 

temperatures to adopting better-suited locations for grape growth.  

One of the consequences of climate change is the frequency of wildfires, such as those that took place 

in the summers of 2017 and 2019 in Northern California (the winemaking capital of the US), those in 

Australia and New Zealand as well as the spring frosts in Bordeaux. Wildfires are not only detrimental to 

grapes and vineyards; the smoke can taint the wines that are already aging in barrels. Frosts can be 

equally detrimental; the frost of 2017 reduced the overall crop yield substantially in Bordeaux.  

Wine indices. Similar to the Liv-ex 100 index that reflects the consumers’ willingness to pay for fine 

wines in a global context, new indices need to be developed in order to provide information about the 

local wine markets, e.g., California, Argentina.  These new indices should reveal whether a vintage will 

be a success in a specific geography. 

Digital transformation. Analytical methods are heavily employed in smart agricultural techniques. 

Weather forecasts tell winemakers whether there will be precipitation, and thus, whether they should 

irrigate the vineyard or not. Technological advancements need to be coupled with analytical methods in 

digital transformation. There is technology that identifies the minerals in the soil; important missing 

minerals can be supplemented in the irrigation systems for optimal soil composition necessary for grape 

growth.  
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Tasting scores. There are various tasting experts and their scores are demonstrated to be important for 

the price and quality perceptions. Future research should develop composite tasting scores using machine 

learning algorithms. These composite scores are likely to improve the predictions in futures prices.     
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Part A 
This section of the online supplement provides the supplemental information about the predictive 

analytics model presented in Section 2 of the publication.  

 

Data Used in the Predictive Analytics Model:  

The data in Hekimoğlu and Kazaz (2020) consists of the leading 40 chateaus that are listed in the 

Bordeaux 500 index. Their futures prices (in €/bottle) are collected from Liv-ex (www.liv-ex.com). Five 

Sauternes wine producers (Yquem, Climens, Coutet, Suduiraut, and Rieussec) are excluded because the 

production process and timeline of these wines are different than the traditional Bordeaux wines. Latour 

and Forts Latour wines are not offered in the form of wine futures and Petrus, Fleur Petrus, and Pin have 

missing futures prices in the Liv-ex database. Table A1 provides the list of these chateaus and their 

appellations; it also presents the average futures prices and the standard deviation for vintages between 

2001 and 2017.  

  

mailto:bkazaz@syr.edu
http://www.liv-ex.com/
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Chateau Region 
Price (€/bottle) 

Chateau Region 
Price (€/bottle) 

Average Std. Dev. Average Std. Dev. 
Angelus Right Bank 154.12 78.58 Lafleur Right Bank 400.71 145.57 
Ausone Right Bank 521.29 254.63 Leoville Barton Left Bank 43.11 14.58 
Beychevelle Left Bank 35.18 14.13 Leoville Las Cases Left Bank 115.18 52.43 
Calon Segur Left Bank 39.07 14.09 Leoville Poyferre Left Bank 44.09 18.54 
Carruades Lafite Left Bank 69.40 42.36 Lynch Bages Left Bank 55.19 24.43 
Cheval Blanc Right Bank 398.35 196.69 Margaux Left Bank 310.75 165.41 
Clarence (Bahans) Haut Brion Left Bank 56.50 30.81 Mission Haut Brion Left Bank 216.79 160.99 
Clinet Right Bank 51.35 15.66 Montrose Left Bank 67.79 31.64 
Clos Fourtet Right Bank 46.11 18.93 Mouton Rothschild Left Bank 297.82 169.15 
Conseillante Right Bank 78.83 39.76 Palmer Left Bank 141.88 60.92 
Cos d'Estournel Left Bank 97.85 48.02 Pape Clement Left Bank 62.14 18.88 
Ducru Beaucaillou Left Bank 86.85 42.75 Pavie Right Bank 164.76 69.84 
Duhart Milon Left Bank 36.29 16.90 Pavillon Rouge Left Bank 67.19 35.92 
Eglise Clinet Right Bank 131.35 72.28 Petit Mouton Left Bank 71.76 34.81 
Evangile Right Bank 112.94 44.44 Pichon Baron Left Bank 66.69 30.43 
Grand Puy Lacoste Left Bank 36.92 13.10 Pichon Lalande Left Bank 73.55 31.42 
Gruaud Larose Left Bank 34.45 10.34 Pontet Canet Left Bank 56.39 26.05 
Haut Bailly Left Bank 47.33 22.39 Smith Haut Lafitte Left Bank 42.89 18.07 
Haut Brion Left Bank 299.00 184.99 Troplong Mondot Right Bank 60.19 26.18 
Lafite Rothschild Left Bank 351.31 196.34 Vieux Chateau Certan Right Bank 99.74 51.50 

Table A1. List of chateaus in Hekimoğlu and Kazaz (2020), their region, average futures prices and 
standard deviation. 

 

Météo-France, the national meteorological service organization, is the primary source for the local 

weather information; the weather information from Météo-France is complemented by Wolfram 

Mathematica. The Bordeaux appellation is divided into two main regions: Left Bank and Right Bank. The 

Merignac weather station is the main weather location for the Left Bank chateaus and Saint-Emilion 

weather station is the main weather location for the Right Bank chateaus. The weather data consists of the 

daily maximum temperatures (in °C) and the daily total rainfall (in cm) during the growing season (May 1 

– August 31). Figure A1 illustrates the weather data between 2001 and 2017. Barrel tasting scores are 

provided by Liv-ex. They rely on the most influential publication RobertParker.com.  
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Figure A1. Average of the daily maximum temperatures and the total rainfall observed in the Left Bank 

and Right Bank of Bordeaux as reported in Hekimoğlu and Kazaz (2020) during growing season between 
years 2001 and 2017. 

 

The Liv-ex Fine Wine 100 Index (shortly Liv-ex 100) is a monthly index that represents the price 

movements of the world’s most sought-after 100 wines and is frequently quoted by Bloomberg and 

Reuters as the wine industry benchmark. It captures market-wide fluctuations in this industry. Even 

though the index includes only bottled wines of older vintages, the value of the index is an excellent 

proxy for reflecting consumers’ willingness to pay for fine wines. Figure A2 illustrates the values of Liv-

ex 100 index since its inception in July 2001. 

 

 
Figure A2. Historical values of the Liv-ex Fine Wine 100 index since its inception. 

 
Table A2 presents the correlation coefficients between the main variables used in the predictive 

analytics study. As can be seen from this table, the correlation coefficients between the four independent 

variables and the dependent variable are not strong enough to suggest collinearity. 
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Correlation Coefficients Change in 
futures prices (Δpi,t) 

Change in 
temperature 

(Δmi,t) 

Change in 
rainfall 
(Δri,t) 

Change in 
barrel score 

(Δsi,t) 

Change in 
Liv-ex 100 

(Δlt) 
Change in futures prices (Δpi,t) 1     
Change in temperature (Δmi,t) 0.4358 1    
Change in rainfall (Δri,t) -0.5891 -0.5188 1   
Change in barrel score (Δsi,t) 0.4627 0.2988 -0.4271 1  
Change in Liv-ex 100 (Δlt) 0.5343 -0.0381 -0.1742 0.0563 1 

Table A2. The correlation coefficients among variables as reported in Hekimoğlu and Kazaz (2020). 
 

Robustness Analysis  
We next present a comprehensive robustness analysis confirming the predictive accuracy of Model 9 

presented in Hekimoğlu and Kazaz (2020). 

Quantile Regression Analysis 

Does Model 9 predict consistently well at different price levels? Using the quantile regression approach, 

one can see from Table A3 that Model 9 exhibits consistent performance at all price levels.   

 

Regression Percentiles Price Thresholds (€) Fitted Line R2 
Below 25th percentile price ≤ 45.86 y = 1.0600x 97.36% 

Between 25th and 50th percentile 45.86 < price ≤ 72.18 y = 1.0041x  95.00% 
Between 50th and 75th percentile 72.18 < price ≤ 143.90 y = 1.0091x 95.42% 

Above 75th percentile price > 143.90 y = 0.9989x 94.81% 
All observations  y = 1.0002x 94.87% 

Table A3. Results of regression in quantiles in Hekimoğlu and Kazaz (2020) using Model 9. 
 

Lasso Analysis for Variable Selection 

Hekimoğlu and Kazaz (2020) provide a comprehensive robustness check on the proposed predictive 

model. Their study begins with a Lasso analysis which is a popular machine learning methodology for 

variable selection. Lasso analysis makes the selection with the aim to balance the in-sample fit and the 

out-of-sample prediction accuracy. It departs from traditional approaches like OLS regression which can 

yield good in-sample performance (e.g., high R2 values) with a relatively poorer prediction performance 

in an out-of-sample. Hekimoğlu and Kazaz (2020) report that the optimal variable selection according to 

the Lasso analysis features the exact same variables used in Model 9.  

A comprehensive discussion of various Lasso applications is provided in Ahrens et al. (2019a, 

2019b). Hekimoğlu and Kazaz (2020) employ the square-root Lasso with theory-driven rigorous 

penalization which is the most appropriate method (see Belloni et al. 2011, 2012, 2014, 2016) in order to 

control overfitting and to guarantee consistent out-of-sample prediction performance (Ahrens et al. 

2019b). The square-root Lasso estimates the coefficients that minimize the following expression: 



35 
 

( )2

1 1

1ˆ arg min
pn

T
i i j jlasso

i j
y x

n n
λβ β ψ β

= =

= − +∑ ∑   

where the first term is the square root of mean squared error and the second term is a penalty term with 

the overall penalty level λ and individual penalty loading ψj for each regressor under n observations and p 

regressors. The square-root Lasso with theory-driven rigorous penalization approach yields the optimal 

overall penalty level λ = (1.1)(n)1/2Φ-1(1 – 0.05/(log(n)p)), where Φ-1(·) is the inverse of the standard 

normal cumulative distribution, and computes the individual penalty loading ψj using an iterative 

algorithm (see Ahrens et al. 2019b for details). 

Hekimoğlu and Kazaz (2020) include a total of 33 independent variables in their analysis. 

Complementing the independent variables defined earlier, their study employs the following additional 

variables:  

Quadratic variables. Quadratic terms of the changes in temperature, rainfall, barrel score and Liv-ex 

100 variables account for potential nonlinearity in the form of convexity/concavity and are denoted by 

(Δmi,t)2, (Δri,t)2, (Δsi,t)2 and (Δlt)2, respectively. 

Negative interaction variables. The negative interaction variables account for possible negative 

synergies stemming from multiple negative news. They are described as: 

(mri,t)- = |Δmi,t| × Δri,t if mi,t < mi,t-1 and ri,t > ri,t-1, (mri,t)- = 0 if otherwise; 

(mli,t)- = Δmi,t × Δlt if mi,t < mi,t-1 and lt
mar < lt-1

may, (mli,t)- = 0 if otherwise; 

(msi,t)- = Δmi,t × Δsi,t if mi,t < mi,t-1 and si,t < si,t-1, (msi,t)- = 0 if otherwise; 

(rli,t)- = Δri,t × |Δlt| if ri,t > ri,t-1 and lt
mar < lt-1

may, (rli,t)- = 0 if otherwise; 

(rsi,t)- = Δri,t × |Δsi,t| if ri,t > ri,t-1 and si,t < si,t-1, (rsi,t)- = 0 if otherwise; 

(lsi,t)- = Δlt × Δsi,t if lt
mar < lt-1

may and si,t < si,t-1, (lsi,t)- = 0 if otherwise. 

Change in exchange rates. The variable Δfx_$t is the logarithmic change in the USD ($) to Euro (€) 

exchange rate between the futures price of the previous vintage and shortly before the futures price of the 

new vintage, i.e., Δfx_$t = log(fx_$t
mar/fx_$t-1

may) where fx_$t-1
may is the value of $/€ rate around the en 

primeur campaign of vintage t – 1 (corresponding to May of year t), and fx_$t
mar is the value of $/€ rate in 

March prior to the en primeur campaign of vintage t (corresponding to March of year t + 1). The variable 

Δfx_£t = log(fx_£t
mar/fx_£t-1

may) is the logarithmic change in the Pound Sterling (£) to Euro (€) exchange 

rate. These exchange rate variables are intended to capture the influence of currency fluctuations.  

Left Bank dummy. The binary variable lbi takes a value of 1 if chateau i is located in the Left Bank 

region and a value of 0 if it is in the Right Bank region. It is important to remember that the Left Bank 

chateaus produce wines that are dominated by Cabernet Sauvignon grapes and the Right Bank chateaus 

focus on wines that employ Merlot grapes; thus, this classification can be a potentially important factor.  
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The 1855 Bordeaux Classification (for Left Bank) variables. The 1855 Bordeaux Classification is an 

official ranking system established by Napoleon III in 1855. It is still in effect. It classifies chateaus 

according to their reputation into five groups from first to fifth growth where the first growth represent 

the most reputable chateaus. Five binary variables are defined, firsti, secondi, thirdi, fouthi, fifthi, and they 

take the value of 1 if chateau i belongs to the corresponding category and 0 if it does not. These five 

binary variables aim to capture the reputation effects on prices.  

The Saint-Emilion Classification (for Right Bank) variables. The Saint-Emilion Classification 

categorizes the notable Right Bank chateaus based on their reputation. Binary variables are defined for 

each category: Premier Grand Cru Classe A (pgai) and Premier Grand Cru Classe B (pgbi) take the value 

of 1 if chateau i belongs to the corresponding category and 0 if it does not. Table A4 provides the 

comprehensive set of classifications used for the Left Bank and the Right Bank chateaus.  

Other chateau variables. Three additional time-variant chateau variables are employed in the 

analysis: (1) Annual trade volume Δvoli,t = voli,t – voli,t-1 where voli,t describes the percentage of the total 

trade volume that belongs to chateau i in year t; (2) annual trade value Δvali,t = vali,t – vali,t-1 where vali,t 

describes the percentage of the total trade value that belongs to chateau i in year t; and, (3) the number of 

unique wines produced by chateau i between two consecutive vintages, i.e., Δunqi,t = unqi,t – unqi,t-1 where 

unqi,t is the number of unique wines produced by chateau i in year t.  

 
The 1855 Bordeaux Classification  

(for Left Bank) 
The Saint-Emilion Classification 

(for Right Bank) 
First Growth Fourth Growth Premier Grand Cru Classe A 

Haut Brion Beychevelle Angelus 
Lafite Rothschild Duhart Milon Ausone 
Margaux Fifth Growth Cheval Blanc 
Mouton Rothschild Grand Puy Lacoste Pavie 

Second Growth Lynch Bages Premier Grand Cru Classe B 
Cos d'Estournel Pontet Canet Clos Fourtet 
Ducru Beaucaillou Unclassified Troplong Mondot 
Gruaud Larose Carruades Lafite Unclassified 
Leoville Barton Clarence (Bahans) Haut Brion Clinet 
Leoville Las Cases Haut Bailly Conseillante 
Leoville Poyferre Mission Haut Brion Eglise Clinet 
Montrose Pape Clement Evangile 
Pichon Baron Pavillon Rouge Lafleur 
Pichon Lalande Petit Mouton Vieux Chateau Certain 

Third Growth Smith Haut Lafitte  
Calon Segur   
Palmer   

Table A4. Chateaus according to the 1855 Bordeaux Classification and the Saint-Emilion Classification. 
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The Lasso method identifies the exact same set of variables identified by the predictive analytics 

model in the study, i.e., Model 9: Δmi,t, Δri,t, Δsi,t, Δlt, and (mli,t)+. It is important to note that the Lasso 

analysis confirms this predictive model by testing 233 (= 8,589,934,592) unique model combinations.  

Robust Regression 

Robust regression is employed in order to ensure that the findings are robust to outlying observations in 

the sample. The analysis shows that no outlier observations need to be dropped from consideration 

according to Cook’s D. Robust regression replicates regressions in an iterative manner using Huber 

weights followed by biweights until the weights of observations converge (Li 1985). It assigns smaller 

weights to outliers in order to reduce their impact. Replicating the analysis using robust regression, 

Hekimoğlu and Kazaz (2020) report that all statistical inferences remain intact, yielding the conclusion 

that the findings are robust to outliers. 

Hierarchical Linear Modeling 

Hierarchical linear modeling is employed in order to see whether the data features group effects. This 

methodology introduces chateau-specific intercept and coefficients for all of the variables in the 

predictive model. The revised version of Model 9 is as follows: 

Δpi,t = α0 + β0,i + (α1 + β1,i)Δmi,t + (α2 + β2,i)Δri,t + (α3 + β3,i)Δsi,t + (α4 + β4,i)Δlt + (α5 + β5,i)(mli,t)+ + εi,t 

where αk represents the fixed (average) effect and βk,i represents the random effect for chateau i such that 

βk,i ~ N(0, σk
2) for k ∈ {0,…, 5}. Maximum likelihood is used in order to estimate the parameters αk and 

σk
2 for each k, along with σε2 denoting the variance for εi,t. From the variance estimates, it is concluded 

that the effects of temperature, Liv-ex 100 index and their positive interaction vary across chateaus. The 

consequence of this observation is that the futures prices across chateaus respond differently to these three 

independent variables. Therefore, the analysis is replicated with the mixed-effects regression that features 

chateau-specific intercept and coefficients. The results of a mixed-effect regression for the hierarchical 

linear modeling approach is tabulated in Table A5. It demonstrates that the results do not improve using 

the hierarchical linear model.  

2.5.4. Hierarchical Bayes Modeling 

This section presents a Bayesian alternative to hierarchical modeling of the group-level effects which 

treats αk, σk
2, and σε2 as fixed unknown parameters estimated through maximum likelihood. The Bayesian 

approach treats these parameters as random variables. A normal likelihood model is employed that 

considers  

Δpi,t ~ N(α0 + β0,i + (α1 + β1,i)Δmi,t + (α2 + β2,i)Δri,t + (α3 + β3,i)Δsi,t + (α4 + β4,i)Δlt + (α5 + β5,i) (mli,t)+, σε2) 

where the prior and hyperprior distributions are αk ~ N(0, 10000), βk,i ~ N(0, σk
2), σk

2 ~ Inv-Gamma(0.01, 

0.01) for k ∈ {0,…, 5}, and σε2 ~ Inv-Gamma(0.01, 0.01). Metropolis-Hastings and Gibbs sampling 

methods are used in order to simulate the posterior distributions. Table A5 presents the results of the 
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analysis pertaining to hierarchical Bayes. It demonstrates that the results do not improve using 

hierarchical Bayes modeling.  

2.5.5. Dependent Variable Retransformation 

The predictive model in Hekimoğlu and Kazaz (2020) requires retransforming a logarithmic dependent 

variable back to its untransformed scale. Two alternative methods can be used to remove potential bias 

due to this retransformation: The normal theory estimation and the smearing estimation in Duan (1983). 

Normal theory estimation assumes that errors in (1) are normally distributed. In light of this assumption, 

it is appropriate to revise (2) as 

( )2
, , , 1

ˆˆ ˆexp 2N
i t i t i tp p pσ −= ∆ +            (29) 

where 2σ̂  denotes the mean squared error in (1). Duan’s smearing estimation is an alternative and 

nonparametric method which does not require any knowledge on the error distribution. For the smearing 

estimates, it is appropriate to revise (2) as follows: 

( ) ( )1
, , , , 1

ˆˆˆ exp expD
i t i t i t i t

i t
p N p pε−

−
 

= ∆ 
 

∑∑         (30) 

where ,î tε  denotes the residual for vintage t of chateau i in (1). 

Table A5 compares the out-of-sample performance of the original estimates with that of the normal 

theory and the non-parametric approach. The analysis concludes that the original estimates do not feature 

a systematic bias. 

 

Vintage 

Mean Absolute % Error 

OLS Robust 
Regression 

Hierarchical 
Linear 
Model 

Hierarchical 
Bayes 

Normal  
Theory 

Retransformation 

Smearing 
Method 

Retransformation 
2015 12.74% 13.39% 12.88% 12.55% 11.31% 11.31% 
2016 11.42% 11.69% 11.39% 12.22% 10.22% 10.23% 
2017 9.19% 9.29% 9.15% 9.58% 10.45% 10.44% 

Average 11.12% 11.46% 11.14% 11.45% 10.66% 10.66% 
Table A5. Summary of out-of-sample testing results in Hekimoğlu and Kazaz (2020). The comparison of 
Model 9 using OLS of versus Robust Regression, Hierarchical Linear Model, Hierarchical Bayes Model, 

Normal Theory-based Retransformation and Duan’s Smearing Method in Retransformation.  
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Part B 
This section of the online supplement provides the supplemental information about the predictive 

analytics model presented in Section 4 of the publication.  

 

Predictive Analytics for the Evolution of Prices 
We begin our discussion with realized values of futures and bottled wine prices. In May of calendar year 

t, futures for vintage t – 1 are released at the futures price of f1
j,t-1 for winemaker j. We express the futures 

price of the same vintage for winemaker j in September of calendar year t as f2
j,t-1, and in May of calendar 

year t + 1 as f3
j,t-1. In May of calendar year t, bottled wine of winemaker j from vintage t – 2 is also 

released, and we express this bottle price as b1
j,t-2. We denote the bottle price of vintage t – 2 from 

winemaker j in September of calendar year t with b2
j,t-2, and in May of calendar year t + 1 with b3

j,t-2.  

After the wine distributor makes investments in futures of vintage t – 1 and bottled wine of vintage t – 

2 from winemaker j in May of calendar year t, new summer weather information becomes available in 

calendar year t. This new summer weather information, which is fully observed by September of calendar 

year t, provides a relative comparison for the wines that are from vintages t – 1 and t – 2. For the case of 

wine futures of vintage t – 1, the new weather information from May–September period of year t 

compared to the growing season of grapes (i.e., May–September period of year t – 1) can play a role. 

Thus, both f2
j,t-1 and f3

j,t-1 can be influenced by the new weather information. For the case of bottled wine 

of vintage t – 2, the new weather information from May–September period of year t compared to the 

growing season of grapes (i.e., May–September period of year t – 2) can also influence the values of b2
j,t-2 

and b3
j,t-2. Similarly, market conditions change from May to September of year t. As a consequence, the 

weather and market information observed at the end of summer in calendar year t can have an impact of 

the values of f2
j,t-1, f3

j,t-1, b2
j,t-2, and b3

j,t-2. 

Evolution of Futures Prices 

For the futures of vintage t – 1, we denote the average temperature difference between the new growing 

season (of calendar year t) and the wine’s own growing season by wt. A positive (negative) wt implies that 

the new growing season is relatively warmer (colder) than the growing season of the futures. We denote 

the percentage change in Liv-ex 100 index over the new growing season (of calendar year t) by mt. A 

positive (negative) mt implies that the market conditions improved (worsened) over the new growing 

season.  

We develop the following linear regression models designated as Model 1A and Model 1B, 

respectively, where t = {2008, 2009, 2010, 2011, 2012} and j = {1, 2, …, 44}: 

(f2
j,t-1 – f1

j,t-1) = γ0 + γ1wt + γ2mt + εj,t,                  (31) 
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(f3
j,t-1 – f2

j,t-1) = η0 + η1wt + η2mt + εj,t.           (32) 

Table B1 provides the regression results of the impact of new summer weather and market 

information on the price evolution of futures with f2
j,t-1 (in Model 1A) and f3

j,t-1 (in Model 1B). Four 

conclusions can be made from this empirical analysis. First, better weather of the upcoming vintage (i.e., 

higher value of wt) has a negative impact on the evolution of futures price from f1
j,t-1 to f2

j,t-1. This weather 

effect is statistically significant at 1% level. This can be easily understood: If  the upcoming vintage had 

better weather conditions, then the futures price for the current vintage would decrease. Moreover, better 

weather of the upcoming vintage (i.e., higher value of wt) has a continued negative impact (statistically 

significant at 1%) on the evolution of futures prices from f2
j,t-1 to f3

j,t-1. This implies that the new weather 

information is not completely priced in the futures prices as of September of calendar year t. A similar 

observation is made in Ashenfelter (2008). Second, the negative coefficient representing the impact of 

weather in the evolution of futures prices from f2
j,t-1 to f3

j,t-1 is greater in absolute value than that of f1
j,t-1 to 

f2
j,t-1. Third, improving market conditions during the summer of calendar year t (with a higher value of mt) 

has a positive impact on the evolution of futures prices both from f1
j,t-1 to f2

j,t-1 and from f2
j,t-1 to f3

j,t-1. This 

market effect is statistically significant at 1% level. Fourth, the positive coefficient representing the 

impact of market conditions in the evolution of futures prices from f2
j,t-1 to f3

j,t-1 is greater than that of f1
j,t-1 

to f2
j,t-1.  

 
 Model 1A: f2

j,t-1 –f1
j,t-1 Model 1B: f3

j,t-1 –f2
j,t-1 

Parameter Coefficient t-stat Coefficient t-stat 

Intercept 0.0296 2.85*** 0.0788 4.45*** 

wt -0.0501 -4.58*** -0.1281 -6.88*** 

mt 0.0079 5.47*** 0.0223 9.01*** 

Adjusted R2 0.19  0.37  

Observations 220  220  

Table B1. Linear regression results demonstrating the impact of weather and market conditions on the 
evolution of futures prices. *** denotes statistical significance at 1%. 

 

Evolution of Bottled Wine Prices 

Using the same notation, we develop predictive analytics models in order to examine the impact of the 

upcoming vintage’s weather condition and market fluctuations on the price evolution of bottled wine. We 

develop the following linear regression models designated as Model 2A and Model 2B, respectively, 

where t = {2008, 2009, 2010, 2011, 2012} and j = {1, 2, …, 44}: 

(b2
j,t–2 – b1

j,t–2) = θ0 + θ1wt + θ2mt + εj,t                  (33) 
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(b3
j,t–2 – b2

j,t–2) = λ0 + λ1wt + λ2mt + εj,t.           (34) 

Table B2 provides the regression results of the impact of new summer weather and market 

information on the evolution of bottle prices described as b2
j,t–2 (in Model 2A) and b3

j,t–2 (in Model 2B). 

Three conclusions can be made from the analysis. First, weather conditions of the upcoming vintage (i.e., 

the value of wt) does not have a statistically significant effect on the evolution of bottle prices. This holds 

true when prices evolve from b1
j,t–2 to b2

j,t–2 and from b2
j,t–2 to b3

j,t–2. Second, improving market conditions 

during the summer of calendar year t (with a higher value of mt) has a positive impact on the evolution of 

bottle prices both from b1
j,t–2 to b2

j,t–2 and from b2
j,t–2 to b3

j,t–2. Third, the positive coefficient representing 

the impact of market conditions in the evolution of bottle prices from b2
j,t–2 to b3

j,t–2 is greater than that of 

b1
j,t–2 to b2

j,t–2.  

 
 Model 2A: b2

j,t–2 – b1

j,t–2 Model 2B: b3

j,t–2 –b2

j,t–2 

Parameter Coefficient t-stat Coefficient t-stat 

Intercept 0.0248 1.52 0.0187 0.53 

wt -0.0082 -0.59 0.0245 0.82 

mt 0.0059 2.19** 0.0255 4.43*** 

Adjusted R2 0.01  0.12  

Observations 220  220  

Table B2. Linear regression results demonstrating the impact of weather and market conditions on the 
evolution of bottle prices. ** and *** denote statistical significance at 5% and 1%, respectively. 

 

 


