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E arlier publications indicate that the price of young wines cannot be estimated accurately through weather conditions.
Considering that a majority of fine wine is sold in the form of wine futures, even before the wine is bottled, determin-

ing realistic prices for these wine futures accurately is one of the most critical decisions. Surveys of leading wine mer-
chants and industry experts exhibit significant departures from the realized market prices. We develop a pricing model
for fine wines using weather, market, and expert reviews. The financial exchange for fine wines called Liv-ex has already
adopted our estimated prices and tagged them as “realistic prices.” Our approach combines temperature, rainfall, market
fluctuations, and tasting expert scores and leads to accurate estimations that the wine industry has not seen before. Our
study shows that higher temperatures, lower levels of precipitation, appreciation in the Liv-ex 100 index as a market indi-
cator, and higher barrel scores increase market prices. We conduct a comprehensive set of robustness checks and show
that the mean absolute deviation of actual market prices from our estimated prices is substantially smaller than any aca-
demic benchmark. Our realistic prices help create transparency in this highly opaque market. When compared with the
realized prices, our realistic prices guide buyers (e.g., distributors, restaurateurs, merchants) in their purchase decisions as
they can determine whether a wine is underpriced or overpriced.
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1. Introduction

Economists have long tried to estimate wine prices
through weather. In two most influential publications,
Ashenfelter et al. (1995) and Ashenfelter (2008) pro-
vided remarkable insights regarding the impact of
weather on aged Bordeaux wines. However, these
scholars, as well as authors of similar publications,
conclude that estimating young wine prices using
weather information does not lead to accurate results.
For brevity, we limit our definition of young wines to
the wines that are still aging in the barrel but traded
in the form of en primeur, that is, financial contracts
loosely translated into English as wine futures, before
the wines are bottled. Our study develops pricing
models that estimate the appropriate futures prices
for fine Bordeaux wines. It identifies the determinants
of prices which include changes in weather (both the
average of daily maximum temperatures and total
precipitation), in market conditions described
through an index, and in the barrel scores of tasting
experts.
Wine is an important agricultural product with a

growing global interest. The global wine market is
expected to reach $424 billion in 2023 from its $302
billion in 2017. France is the leading wine exporting

country with an estimated value of €13 billion in 2017.
Bordeaux region of France, which is the motivating
region of our study, produces the most sought-after
wines around the world. Bordeaux wine prices often
influence the prices of the wines produced in other
regions of the world. Thus, Bordeaux wines are per-
ceived as the pacesetter of worldwide trade in wine
supply chains.
Figure 1 presents a timeline of events in the Bor-

deaux wine supply chain. Chateaus grow their grapes
in their estate from May to August each summer.
Grapes are harvested and pressed in September and
October, and the wine (of vintage t) begins aging in
barrels. Tasting experts visit chateaus approximately
8 to 9 months after the harvest and then release their
barrel tasting scores in April of year t + 1. This is
when chateaus begin to sell their wines to n�egociants.
N�egociants purchase the wine from chateaus at the
ex-chateau price and sell the wine in terms of futures
contracts in the market at an ex-n�egociant price. A vast
majority of Bordeaux wines, more than 80% and often
100%, are traded in the form of wine futures in the
summer of year t + 1.
It is important to highlight that the ex-n�egociant

price is the “market price” for wine futures. Our
study estimates the market price, or the true value of
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the wine in the wine market, designated as the ex-
n�egociant price. Determining the appropriate ex-n�ego-
ciant price is critical in the wine supply chain because
it sets the pace in the downstream and influences the
trade significantly. In the remaining part of the manu-
script, we will use the term “market price” referring
to the ex-n�egociant price. Figure 2 provides a visual
depiction of the wine supply chain. The wine contin-
ues to age in barrels for another year after wine
futures are offered; the wine is bottled during the
summer of year t + 2; thus, the total aging after har-
vest is 18–24 months. After bottling, the wine gets
delivered to the buyers who purchased the wine in
the market from the n�egociants.
What is the right market price for a wine? Can it be

determined accurately before the en primeur cam-
paign, that is, before the wine futures begin to be sold
in the market? As pointed out by the abovementioned
academic publications, it turns out that estimating the
appropriate ex-n�egociant prices is an incredibly chal-
lenging task even for industry experts. The challenge
is evident in the surveys of the London International

Vintner’s Exchange (Liv-ex) which serves as the finan-
cial exchange where all fine wines are traded. A 2016
Liv-ex survey involving 440 of the world’s leading
wine merchants sheds light on the difficulty of esti-
mating the ex-n�egociant prices of the 2015 vintage
wines (https://www.liv-ex.com/2016/06/mercha
nts-underestimated-bordeaux-2015-release-prices/).
The survey constructs a basket where bottles of wine
are included from Cheval Blanc, Cos d’Estournel,
Leoville Las Cases, Mission Haut Brion, Montrose,
Mouton Rothschild, Pavie, Pichon Lalande, Pontet
Canet, and Talbot—all 2015 vintage wines. The 2016
survey results reveal that these 440 leading wine mer-
chants predicted the above basket of wines to have a
value of €1607.80. After ex-n�egociant prices are estab-
lished, the basket had an actual value of €2054.40—
corresponding to a 21% estimation error. The survey
also showed that, when these leading wine merchants
estimated the ex-n�egociant prices, they expected a
17.8% increase in 2015 from the ex-n�egociant prices of
the 2014 vintage; however, the actual market prices
increased by a whopping 45.8% from 2014. How can

Figure 1 The Sequence of Events Leading to the Revelation of ex-n�egociant Prices for Vintage t Wines [Color figure can be viewed at wileyonline
library.com]

Figure 2 The Bordeaux Wine Supply Chain
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the leading merchants and the industry experts be so
inaccurate in their expectations? Is there an empirical
way to estimate the true value of these wines? Our
study fills the void in developing benchmark ex-n�ego-
ciant prices based on weather information, market
fluctuations and tasting expert scores.
From a buyer’s perspective, the lack of a reliable

benchmark ex-n�egociant price for these fine wines cre-
ates an inertia to invest in wine futures. In the absence
of an accurate estimation of the ex-n�egociant price, a
buyer (e.g., importer, distributor, merchant, etc.) can-
not tell whether a wine is appropriately priced in the
market. Our conversations with the executives of the
largest wine distributors in the US point to the same
need for establishing a benchmark price so that they
can determine in confidence whether a wine is over-
priced or underpriced. While there is plenty of expert
opinion with tasting scores, these scores do not imme-
diately translate to appropriate prices for these wines.
Our study responds to this need by establishing a
benchmark price estimate that provides guidance for
buyers in this industry. Collectively, our study brings
transparency into an otherwise highly opaque market.
While our study is motivated by the fine wine

industry, our approach is general, and it applies to
other products where prices are influenced by quality
perceptions and weather fluctuations. Examples
include olive oil, citrus juice, and wagyu beef where
prices are influenced by quality and weather condi-
tions.
Market prices for Bordeaux wines show similar

reactions when they change from one vintage to
another. This is exemplified in Figure 3 which depicts
the change in the ex-n�egociant price of a vintage from
the previous vintage for the 40 chateaus included in
our study. In this figure, values above zero represent
a price increase compared to the price of the previous
vintage, whereas the values below zero represent a
price decrease. One can immediately draw the conclu-
sion that the adjustments in market prices from the
previous vintage exhibit a highly similar behavior.
Figure 3 demonstrates that vintages 2003, 2005, and
2009 are deemed as phenomenal vintages by the
industry and their ex-n�egociant prices soared with
respect to previous vintage ex-n�egociant prices. The
behavior in Figure 3 resembles the social herding
phenomenon commonly observed in agriculture but
departs from it with the sequence of events. In Hu
et al. (2019), for example, crop prices get revealed in
the market first causing farmers to choose the high-
priced crop to plant with the assumption that its price
will remain the same in the next year. In the fine wine
setting, however, the factors are revealed first (i.e.,
temperature, precipitation, tasting scores, and market
conditions) and then prices adjust from the previous
vintage.

One might wonder why the new vintage ex-n�ego-
ciant prices rely on the prior vintage’s ex-n�egociant
prices. The reason for this behavior is operational.
Chateaus have to remove the wine from barrels, bottle
the liquid, and replace the cellar with new barrels
before the new vintage grapes arrive. Similarly, n�ego-
ciants have to move the inventory of the wine they
purchased from chateaus to the market so that they
can recover their cash investment and their money is
not tied into unsold wines. Thus, this 1-year planning
effort creates a coordinated financial and physical
flow that influences the price adjustments from the
prior vintage’s ex-n�egociant prices. This operational
planning phenomenon justifies the similar behavior
observed in adjusting ex-n�egociant prices in Figure 3.
Our study makes several contributions. First, it

identifies four primary factors that are influential in
estimating the market prices for fine wines with sig-
nificant accuracy: Temperature, rainfall, market con-
ditions (e.g., the Liv-ex 100 index representing the
value of the 100 most sought-after wines), and tasting
expert reviews (e.g., barrel scores).
Second, we employ a unique variable definition

that compares two consecutive vintages that account
for the 1-year planning phenomenon and the use of
this “change” variable leads to improved estimation
accuracy. Instead of using the level data, for example,
the ex-n�egociant price for a specific vintage, our analy-
sis uses a value that corresponds to the change from
the ex-n�egociant price of the prior vintage. This defini-
tion of variables leads to significant performance
improvements over earlier publications that estimate
wine prices. Our study is the first to employ this
change variable definition and it makes an academic
contribution to the existing literature.
Third, while earlier publications focus on explain-

ing wine prices, our study tackles a more challenging
task of “estimating” fine wine prices. Thus, our study
makes a significant contribution to the literature. To
our knowledge, the only publication that estimates
fine wine prices prior to our study is Ashenfelter
(2008) and we show that our approach improves esti-
mation performance drastically.
Neil Taylor, vice president of data at Liv-ex,

describes that “this kind of accuracy is not seen in the
wine industry for young wines.” To further test our
model, we provided Liv-ex confidentially with our ex-
n�egociant price estimations for the 2017 vintage Bor-
deaux wines prior to the release of these wine futures
so as not to influence the wine market. We report that
our model performed well and had small deviations
from the realized ex-n�egociant prices. Our estimations
had a mean absolute deviation of 9.19% with a stan-
dard deviation of 7.17% where the minimum and the
maximum deviations are 0.28% and 27.77%, respec-
tively. The most well-known academic benchmark has
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an absolute deviation of 34.38%. The deviations in our
estimations are substantially less than any academic
and/or practice benchmark. Comprehensive analysis
shows that our methodology and results are robust.
These are demonstrated through analyses using quan-
tile regression, Lasso analysis, robust regression, hier-
archical linear modeling, hierarchical Bayes modeling,
and dependent variable retransformation.
The implication of our contribution is significant in

practice. Liv-ex has recently decided to publish our
ex-n�egociant price estimations as “realistic prices”
prior to each year’s en primeur campaigns. The
exchange finds our estimated prices highly accurate
and features them as a guidance for buyers. Thus, our
realistic prices are expected to be used as the new
benchmark prices in the upcoming years.
Fourth, our realistic prices help create transparency

in this otherwise opaque market. Buyers (e.g., wine
merchants, distributors, restaurateurs and collectors)
can now compare our realistic price estimates with
the realized market prices in order to determine
whether a wine is underpriced or overpriced. Our
estimated prices enable buyers to make effective oper-
ational plans influencing the entire downstream in
the wine supply chain. Perception of quality in a wine
is established by the barrel scores of tasting experts,
however, these barrel scores are not easily translated
into prices. For buyers, our price estimations convert
the barrel scores of tasting experts into prices. This
conversion is supplemented by the growing season’s
weather conditions and the evolution of market
dynamics.

Fifth, our realistic price estimates can help wine-
makers determine the prices they can charge n�ego-
ciants, that is, the ex-chateau price. Our study
develops benchmark ex-n�egociant prices through a
comprehensive and rigorous approach. The wine-
maker can now determine the ex-chateau price and its
margin given the appropriate ex-n�egociant price that
will move the wine in the market.

1.1. Literature Review
The economics literature has examined the pricing of
aged wine using weather and expert opinions, how-
ever, these studies failed to estimate young wine
prices. Leading Bordeaux wines are primarily sold
when they are young in the form of wine futures prior
to their bottling. Ashenfelter et al. (1995) and Ashen-
felter (2008) show that mature Bordeaux wine prices
can be explained using weather and age; however,
these two publications report significantly high errors
for young wines. Combris et al. (1997), Jones and
Storchmann (2001), Cardebat and Figuet (2004),
Lecocq and Visser (2006), Ali and Nauges (2007), Ali
et al. (2008), Dubois and Nauges (2010), Ashenfelter
and Jones (2013), Dimson et al. (2015), Ashton (2016),
and Cardebat et al. (2017) also examine Bordeaux fine
wine prices using weather conditions and/or tasting
scores. Using similar approaches, Byron and Ashen-
felter (1995) and Wood and Anderson (2006) examine
Australian wine prices, Haeger and Storchmann
(2006) study American wine prices, and Ashenfelter
and Storchmann (2010) investigate German wine
prices. However, the above publications aim to

Figure 3 Percentage Change in the ex-n�egociant Prices in Each Vintage (between 2002 and 2017) in Comparison to Previous Vintage for the 40
Chateaus Included in the Study [Color figure can be viewed at wileyonlinelibrary.com]
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explain the factors influencing the wine prices rather
than predicting the prices. Bazen and Cardebat (2018)
focus on predicting the prices of Bordeaux generic
wines. However, unlike Bordeaux fine wines and
other agricultural commodities, there is no futures
market for Bordeaux generic wines. Our study com-
plements this economics literature by providing an
accurate pricing model for Bordeaux fine wines that
can be used before the ex-n�egociant prices are
revealed. Furthermore, our study extends the previ-
ous literature in two ways. First, we incorporate the
Liv-ex 100 index into the ex-n�egociant pricing; Liv-ex
100 index serves as a proxy for reflecting consumers’
willingness to pay for fine wines (Cardebat and Jiao
2018). Second, we develop unique variable definitions
that compare two consecutive vintages in order to
account for the 1-year planning phenomenon. Table 1
lists previous publications by the main factors exam-
ined in this study.
Our study makes a significant contribution to the

operations management literature. Xie and Shugan
(2001), Boyacı and €Ozer (2010), Cho and Tang (2013),
Tang and Lim (2013) and Yu et al. (2015a, 2015b)
demonstrate the benefits of advance selling in various
industries. Noparumpa et al. (2015) develop a mathe-
matical model for a winemaker to determine the pro-
portion of wine to be sold in the form of wine futures
with a market-clearing price—the remaining propor-
tion is distributed after the wine is bottled. Their
study makes use of barrel scores in establishing the
market size and shows that selling wine in the form of
futures improves a winemaker’s profit; however,
their study ignores weather and market information.
Hekimo�glu et al. (2017) develop a stochastic program
to examine a wine distributor’s purchasing decision

between wine futures and bottled wine. Their study
employs the next vintage’s temperature and market
information (ignoring rainfall and barrel scores) to
understand the evolution of prices from the ex-n�ego-
ciant price to the bottled wine price. While their model
assumes a given ex-n�egociant price, our study focuses
on providing realistic ex-n�egociant prices using all fac-
tors. In sum, our study enhances these earlier publica-
tions in three ways. First, it identifies the most
influential factors in estimating ex-n�egociant prices
using unique variable definitions. Second, our study
helps buyers in making effective purchasing plans by
showing which wines are underpriced or overpriced.
Third, knowing the appropriate ex-n�egociant price,
winemakers can benefit from our study in determin-
ing the ex-chateau price that they charge when they
sell their wine to n�egociants.

2. Data

This section presents our data collection and sample
selection. We collect wine price data from Liv-ex
(www.liv-ex.com) that operates a global marketplace
for fine wine trade and has the world’s largest data-
base for fine wine prices. The Liv-ex Bordeaux 500
Index (shortly, Bordeaux 500) is composed of the
leading 50 Bordeaux chateaus that serve as the basis
of our sample collection. We exclude the five Sauter-
nes wine producers (Yquem, Climens, Coutet, Suduir-
aut, and Rieussec) because the production process
and timeline of these wines are different than the tra-
ditional Bordeaux wines. Latour and Forts Latour
wines are not offered in the form of en primeur and
Petrus, Fleur Petrus, and Pin have missing ex-n�ego-
ciant prices in the Liv-ex database. We construct our

Table 1 List of Publications by the Main Factors Examined in this Study Where + Indicates that the Factor is Investigated in the Corresponding
Paper

Publication/Factors examined Temperature Rainfall Tasting score Liv-ex 100 index Consecutive vintage comparison

Ashenfelter et al. (1995) + +
Byron and Ashenfelter (1995) + +
Combris et al. (1997) +
Jones and Storchmann (2001) + + +
Cardebat and Figuet (2004) +
Haeger and Storchmann (2006) + + +
Lecocq and Visser (2006) + +
Wood and Anderson (2006) + +
Ali and Nauges (2007) +
Ali et al. (2008) +
Ashenfelter (2008) + +
Ashenfelter and Storchmann (2010) + +
Dubois and Nauges (2010) +
Ashenfelter and Jones (2013) + + +
Dimson et al. (2015) + +
Ashton (2016) +
Cardebat et al. (2017) +
This Study + + + + +
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sample from the remaining 40 chateaus. We collect
the ex-n�egociant price (in €/bottle) for the remaining
40 chateaus between 2001 and 2017 as summarized in
Table 2.
Weather data come from M�et�eo-France, the

national meteorological service organization provid-
ing local weather information, complemented by Wol-
fram Mathematica. The Bordeaux wine region is
divided by the Gironde Estuary into two main
regions: Left Bank and Right Bank. We use the
weather data recorded at the Merignac weather sta-
tion (serving as the main weather station for Bor-
deaux) for the Left Bank and at Saint-Emilion for the
Right Bank. We collect daily maximum temperatures
(in °C) and daily total rainfall (in cm) during the
growing season (May 1–August 31). Figure 4 illus-
trates the weather data between 2001 and 2017.
We collect barrel tasting scores from Liv-ex origi-

nated from the most influential source RobertParker.-
com (the late President Franc�ois Mitterrand
recognized Robert Parker with the Chevalier de
l’Ordre National du M�erite in 1993, and President
Chirac awarded Robert Parker with France’s Legion
of Honor, an extremely rare distinction, in 2005 for his
contributions to the quality and education of French
wines). Barrel scores are viewed as early indicators
for quality. The tasting expert samples the wine that
is still aging in the barrel in the spring of the year fol-
lowing the harvest and establishes the barrel tasting
scores approximately 1 month before the revelation
of ex-n�egociant prices.

We use the Liv-ex Fine Wine 100 Index (shortly Liv-
ex 100) to capture market-wide fluctuations in the fine
wine industry. Liv-ex 100, a monthly index, repre-
sents the price movements of the world’s most
sought-after 100 wines. The components of Liv-ex 100
include only bottled wine prices of earlier vintages;
our study, however, examines the ex-n�egociant prices
of vintages that are not bottled. Even though the
index includes only bottled wines of older vintages,
the value of the index is an excellent proxy for reflect-
ing consumers’ willingness to pay for fine wines. Liv-
ex 100 is quoted by Bloomberg and Reuters as the
industry benchmark. Figure 5 illustrates the values of
Liv-ex 100 since its inception in July 2001.

3. Empirical Analysis

3.1. Variables
This section presents the dependent variable (ex-n�ego-
ciant price) and the independent variables (tempera-
ture, rainfall, barrel score, Liv-ex 100) used in our
models. When ex-n�egociant price of a new vintage is
determined, n�egociants compare it to the previous
vintage because of the 1-year planning phenomenon
explained in Section 1. Therefore, we define the vari-
ables based on the change in their values across two
consecutive vintages. This type of specification is also
consistent with the similar behavior observed in
adjusting ex-n�egociant prices in Figure 3.
Change in ex-n�egociant prices. We define the depen-

dent variable as the logarithmic change across the ex-

Table 2 List of Chateaus with their Region, Average ex-n�egociant Price and Standard Deviation

Chateau Region

Price (€/bottle)

Chateau Region

Price (€/bottle)

Average SD Average SD

Angelus Right Bank 154.12 78.58 Lafleur Right Bank 400.71 145.57
Ausone Right Bank 521.29 254.63 Leoville Barton Left Bank 43.11 14.58
Beychevelle Left Bank 35.18 14.13 Leoville Las Cases Left Bank 115.18 52.43
Calon Segur Left Bank 39.07 14.09 Leoville Poyferre Left Bank 44.09 18.54
Carruades Lafite Left Bank 69.40 42.36 Lynch Bages Left Bank 55.19 24.43
Cheval Blanc Right Bank 398.35 196.69 Margaux Left Bank 310.75 165.41
Clarence (Bahans) Haut Brion Left Bank 56.50 30.81 Mission Haut Brion Left Bank 216.79 160.99
Clinet Right Bank 51.35 15.66 Montrose Left Bank 67.79 31.64
Clos Fourtet Right Bank 46.11 18.93 Mouton Rothschild Left Bank 297.82 169.15
Conseillante Right Bank 78.83 39.76 Palmer Left Bank 141.88 60.92
Cos d’Estournel Left Bank 97.85 48.02 Pape Clement Left Bank 62.14 18.88
Ducru Beaucaillou Left Bank 86.85 42.75 Pavie Right Bank 164.76 69.84
Duhart Milon Left Bank 36.29 16.90 Pavillon Rouge Left Bank 67.19 35.92
Eglise Clinet Right Bank 131.35 72.28 Petit Mouton Left Bank 71.76 34.81
Evangile Right Bank 112.94 44.44 Pichon Baron Left Bank 66.69 30.43
Grand Puy Lacoste Left Bank 36.92 13.10 Pichon Lalande Left Bank 73.55 31.42
Gruaud Larose Left Bank 34.45 10.34 Pontet Canet Left Bank 56.39 26.05
Haut Bailly Left Bank 47.33 22.39 Smith Haut Lafitte Left Bank 42.89 18.07
Haut Brion Left Bank 299.00 184.99 Troplong Mondot Right Bank 60.19 26.18
Lafite Rothschild Left Bank 351.31 196.34 Vieux Chateau Certan Right Bank 99.74 51.50
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n�egociant prices of two consecutive vintages from the
same chateau, that is, Dpi,t = log(pi,t/pi,t-1) where pi,t is
the ex-n�egociant price of vintage t of chateau i that is
revealed at the beginning of the en primeur campaign
(around May of year t + 1). Note that i 2 {1, . . ., 40}
and t 2 {2002, . . ., 2017}.
Warmer temperatures during growing season lead

to quicker ripening of grapes with bolder flavors,
higher sugar content that converts to alcohol, result-
ing in consistent grape harvests. Therefore, a warmer
growing season implies higher quality of grapes that
translates to higher prices of wine.
Change in average temperature. We define the temper-

ature variable as the logarithmic change across the
average growing season temperatures of two consec-
utive vintages, that is, Dmi,t = log(mi,t/mi,t-1) where
mi,t is the average of daily maximum temperatures
during the growing season (May 1–August 31) of year
t in the region where chateau i is located. A warmer
growing season is expected to have a positive impact
on the ex-n�egociant price.
Higher amounts of rain cause grapes to take on

more water diluting flavors and distorting the sugar-
acid balance. With too much rain, the grape berries
start to swell causing spoilage, mold, and mildew. As
a result, higher degrees of precipitation are often asso-
ciated with lower quality of grapes, and therefore, it
is expected to reduce wine prices.

Change in total rainfall. We define the rainfall vari-
able as the logarithmic change across the total grow-
ing season rainfall of two consecutive vintages, that
is, Dri,t = log(ri,t/ri,t-1) where ri,t is the total rainfall
during the growing season period of year t in the
region where chateau i is located. A rainier growing
season is expected to have a negative impact on the
ex-n�egociant price.
Barrel scores of tasting experts provide a proxy for

quality of the wine. Higher barrel tasting scores indi-
cate that the wine is going to evolve to a superior
quality wine that commands a higher price.
Change in barrel tasting score. We define the barrel

score variable as the difference between the barrel
tasting scores of two consecutive vintages of the same
chateau, that is, Dsi,t = si,t – si,t-1 where si,t is the barrel
tasting score of vintage t of chateau i that is revealed
approximately 1 month before the en primeur cam-
paign (corresponding to April of year t + 1). A higher
score is expected to have a positive impact on the ex-
n�egociant price.
Temperature, rainfall and barrel scores are all indi-

cators of quality. Temperature and rainfall directly
influence the grape composition. Barrel scores com-
plement temperature and rainfall variables by incor-
porating the interventions of the winemaker in
producing a high-quality wine. Together, these three
variables provide a stronger description of the quality

Figure 4 Average of the Daily Maximum Temperatures and the Total Rainfall Observed in the Left Bank and Right Bank of Bordeaux During Growing
Season between Years 2001 and 2017 [Color figure can be viewed at wileyonlinelibrary.com]
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potential of the wine, and therefore, they influence
the ex-n�egociant prices.
The Liv-ex 100 index features the fluctuations in the

prices of the world’s most-sought after 100 wines.
Even though the index includes only bottled wines of
older vintages, the value of the index is an excellent
proxy for reflecting consumers’ willingness to pay for
fine wines.
Change in Liv-ex 100. We define the index variable

as the logarithmic change in the value of Liv-ex 100
index between the en primeur campaign of the previ-
ous vintage and shortly before the en primeur cam-
paign of the new vintage, that is, Dlt = log(lt

mar/lt-
1
may) where lt-1

may is the value of Liv-ex 100 around
the en primeur campaign of vintage t – 1 (correspond-
ing to May of year t), and lt

mar is the value of Liv-ex
100 in March prior to the en primeur campaign of vin-
tage t (corresponding to March of year t + 1). The rea-
son behind using the value at the end of March is to
be able to make timely price estimations before the en
primeur campaign begins. This variable captures the
market-wide changes in the fine wine industry
between the en primeur campaigns of two consecutive
vintages. Therefore, a positive change in Liv-ex 100
index is expected to have a positive impact on the ex-
n�egociant price.
Table 3 presents the correlation coefficients among

the dependent variable and the main independent

variables. The values are not too strong to indicate
any collinearity issue.
Earlier discussion in this section has identified

four variables that potentially influence the ex-
n�egociant prices. When the wine industry observes
several of these variables moving together in the
direction indicating higher prices (e.g., a higher
average temperature along with a positive change
in Liv-ex 100), an excitement builds up for that
vintage. This hype leads to dramatic upswings in
prices. For example, one may recall from Figure 3
that n�egociants showed a strong positive reaction
when determining the prices of 2003, 2005, and
2009 vintages. Those vintages were eagerly antici-
pated by the fine wine industry due to a combina-
tion of multiple positive factors such as higher
average temperature along with a positive change
in Liv-ex 100, etc. Therefore, we define the posi-
tive interaction variables in order to account for
such dramatic price increases observed in cele-
brated vintages.
Positive Interaction variables. We define the following

six interaction variables to combine the pairwise posi-
tive effects of temperature and rainfall (mri,t)

+, tem-
perature and Liv-ex 100 (mli,t)

+, temperature and
barrel score (msi,t)

+, rainfall and Liv-ex 100 (rli,t)
+, rain-

fall and barrel score (rsi,t)
+, and Liv-ex 100 and barrel

score (lsi,t)
+:

Figure 5 Historical Values of the Liv-ex Fine Wine 100 Index Since its Inception [Color figure can be viewed at wileyonlinelibrary.com]
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Other explanatory variables. We have also examined a
total of 23 additional explanatory variables including
the quadratic terms of main independent variables,
the negative interaction variables, the change in
exchange rates (e.g., $/€, £/€), the Left Bank variable,
the 1855 Bordeaux Classification variables, the Saint-
Emilion Classification variables, the changes in cha-
teau’s annual trade volume, annual trade value, and
number of unique wines. These variables are used in
the Lasso analysis presented in Section 4.1. We omit
them here from presentation because none of these
variables are selected among the optimal set of vari-
ables by the Lasso analysis. Their definitions are pro-
vided in Section 4.1.1.

3.2. Analysis and Results
Table 4 provides the results associated with the ordi-
nary least squares (OLS) regression of various models
using cluster-robust standard errors (using classical
standard errors leads to the same statistical infer-
ences). The dependent variable is Dpi,t in all models
where i 2 {1, . . ., 40} and t 2 {2002,. . ., 2017}. Note that
the number of observations is less than 640 due to
missing data points.
From models 1, 2, 3, and 4, we conclude that tem-

perature, rainfall, barrel score, and Liv-ex 100 have an
impact on the ex-n�egociant prices independently. Each
of these variables are statistically significant at 1%,
and their coefficients fetch signs as expected.
Model 5 can be interpreted as the weather model

because it utilizes both temperature and rainfall as
explanatory factors. Model 6 adds barrel score to the

weather variables, and Model 7 adds Liv-ex 100 to the
other three variables. All variables in models 5, 6, and
7 continue to be significant at 1%. Variance inflation
factors (VIF) for Model 7 that incorporates all four
variables are 1.06 for Dlt, 1.24 for Dsi,t, 1.41 for Dmi,t,
and 1.62 for Dri,.
Models 8–13 build on Model 7 by incorporating the

positive interaction variables. Those interaction vari-
ables fetch positive coefficients as expected in accor-
dance with their definition and are statistically
significant at 1%. These findings support our earlier
observation about combined positive factors leading
to hype and further increases in ex-n�egociant prices. It
is also worth noting that Model 9 leads to an impres-
sive explanatory power with an R2 value of 74.62%.
VIF for Model 9 are 1.24 for Dsi,t, 1.41 for Dlt, 1.63 for
Dmi,t, 2.01 for Dri,, and 2.43 for (mli,t)

+. It is worth not-
ing here that a commonly used threshold to identify
collinearity is a VIF value greater than 5 (Studenmund
2001). We conclude from these VIF values, combined
with the correlation values in Table 3, that there is no
collinearity issue in our analysis.
Models 14–16 examine the combined effects of two

interaction terms: Model 14 uses temperature and
rainfall (mri,t)

+ with Liv-ex 100 and barrel score (lsi,t)
+,

Model 15 uses temperature and Liv-ex 100 (mli,t)
+

with rainfall and barrel score (rsi,t)
+, and Model 16

uses temperature and barrel score (msi,t)
+ with rainfall

and Liv-ex 100 (rli,t)
+. In Model 14, the temperature

and rainfall interaction (mri,t)
+ is significant at 1% and

the Liv-ex 100 and barrel score interaction (lsi,t)
+ is sig-

nificant at 5%. In Model 15, the temperature and Liv-

Table 3 The Correlation Coefficients among the Dependent Variable and the Main Independent Variables

Correlation Coefficients

Change in
ex-n�egociant
prices (Dpi,t)

Change in
temperature

(Dmi,t)
Change in

rainfall (Dri,t)
Change in barrel
score (Dsi,t)

Change in
Liv-ex 100

(Dlt)

Change in ex-n�egociant prices (Dpi,t) 1
Change in temperature (Dmi,t) 0.4358 1
Change in rainfall (Dri,t) –0.5891 –0.5188 1
Change in barrel score (Dsi,t) 0.4627 0.2988 –0.4271 1
Change in Liv-ex 100 (Dlt) 0.5343 –0.0381 –0.1742 0.0563 1

ðmri;tÞþ ¼ Dmi;t � Dri;t
�� ��ifmi;t [mi;t�1 and ri;t\ri;t�1; ðmri;tÞþ ¼ 0 if otherwise;

ðmli;tÞþ ¼ Dmi;t � Dltifmi;t [mi;t�1 and lmar
t [ l

may
t�1 ; ðmli;tÞþ ¼ 0 if otherwise;

ðmsi;tÞþ ¼ Dmi;t � Dsi;tifmi;t [mi;t�1 and si;t [ si;t�1; ðmsi;tÞþ ¼ 0 if otherwise;

ðrli;tÞþ ¼ Dri;t
�� ��� Dlt if ri;t\ri;t�1 and lmar

t [ l
may
t�1 ; ðrli;tÞþ ¼ 0 if otherwise;

ðrsi;tÞþ ¼ Dri;t
�� ��� Dsi;t if ri;t\ri;t�1 and si;t [ si;t�1; ðrsi;tÞþ ¼ 0 if otherwise;

ðlsi;tÞþ ¼ Dlt � Dsi;t if l
mar
t [ l

may
t�1 and si;t [ si;t�1; ðlsi;tÞþ ¼ 0 if otherwise:
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ex 100 interaction (mli,t)
+ is significant at 1% but the

rainfall and barrel score interaction (rsi,t)
+ is not statis-

tically significant. In Model 16, both interaction terms
are statistically significant at 1%. We exclude the
remaining combinations of interaction terms from
presentation where two interaction terms share a
common factor (e.g., temperature and rainfall (mri,t)

+

with temperature and Liv-ex 100 (mli,t)
+ where tem-

perature is a common factor) due to strong correlation
among them.
The Akaike information criterion (AIC) helps deter-

mine the best estimation model. According to this cri-
terion, the preferred model for estimation is the one
with the minimum AIC value. Model 9 stands out
among other specifications with its minimum AIC
value (�133.56), remarkable explanatory power (an
R2 of 74.62%) and statistically significant coefficients.
Model 9 has the following equation:

Dpi;t ¼ a0 þ a1Dmi;t þ a2Dri;t þ a3Dsi;t þ a4Dlt
þ a5ðmli;tÞþ þ ei;t: ð1Þ

The coefficient estimates of this model suggest that
1% increase in temperature (Dmi,t = 0.01) and Liv-ex
100 index (Dlt = 0.01) lead to a price increase of 0.57%
and 0.84%, respectively. Furthermore, when both fac-
tors show improvement, the positive interaction
between these two variables yields an additional
increase of 0.54% for each percent increase in both
variables ((mli,t)

+ = 0.01 9 0.01 = 0.0001). One point
increase in barrel score (Dsi,t = 1) has a positive
impact of 3.2%, whereas 1% increase in rain
(Dri,t = 0.01) shows a negative effect by 0.06%.
We next calculate the estimated ex-n�egociant prices,

denoted p̂i;t, using the fitted values from Model 9 in
Equation (1), denoted D̂pi;t, and the realized ex-n�ego-
ciant price of the previous vintage, denoted pi,t-1:

p̂i;t ¼ exp D̂pi;t
� �

pi;t�1: ð2Þ

Figure 6 illustrates actual ex-n�egociant prices pi,t
plotted against the estimated ex-n�egociant prices p̂i;t.
We would like to underline the strikingly accurate

fit that Model 9 generates where the y = 1.0002x line
has a slope extremely close to 1 with an R2 value of
94.87%. The implication of the slope being close to 1 is
that our estimations on average are significantly close
to the actual prices. The high value of R2 is not caused
by omitting the intercept; when the intercept is
included in the fitted line, we obtain y = 3.53 + 0.988x
with an R2 of 90.97% and the intercept is not statisti-
cally significant.
One might intuit that the estimation accuracy might

change at different price levels. For example, how
does the fit between the actual and estimated ex-n�ego-
ciant prices change between less expensive and

expensive wines? To provide insight into goodness-
of-fit at various price levels, it is useful to regress our
data in quantiles. Table 5 shows the regression results
for wines at different price quantiles.
Table 5 shows that the fit between the actual and

estimated ex-n�egociant prices is consistent at different
price levels. In three of the four quantiles, the fitted
line features a slope that is close to 1 with remarkably
high R2 values; the only exception appears to be the
lower priced wines (i.e., below 25th percentile) where
our estimations deviate from the actual prices by 6%.

3.3. Out-of-Sample Testing
This section demonstrates the impressive out-of-sam-
ple performance of Model 9 by benchmarking against
the Ashenfelter (2008) approach that utilizes tempera-
ture and rain variables in the form of level data.
According to the estimated and actual prices reported
in Ashenfelter (2008), their weather-based approach
leads to a mean absolute percentage error of 36.14%
for vintages between 1967 and 1972 (details are pro-
vided in Appendix).
Prior to the en primeur campaign of the 2017 vintage

in the summer of 2018, we provided our estimated ex-
n�egociant prices to Liv-ex in order to test the out-of-
sample performance of Model 9 and asked Liv-ex
executives not to share it with chateaus/n�egociants in
order not to influence their price decisions. We pre-
sent the results of this test in this section. In order to
compute the ex-n�egociant prices of the 2017 vintage
wines (i.e., t = 2017), the model in Equation (1) is cali-
brated using the vintages between 2002 and 2016, that
is, t 2 {2002, . . ., 2016}. The temperature (mi,t=2017) and
rainfall (ri,t=2017) observations become available by the
end of August 2017. The Liv-ex 100 value (lt=2017

mar)
was recorded on March 31, 2018. Barrel tasting scores
(si,t=2017) were published in April 2018. Using these
new observations with the calibrated Model 9 coeffi-
cients, we compute the ex-n�egociant prices of the 2017
vintage wines, that is, p̂i;t¼2017 as described in Equa-
tion (2). Once the actual ex-n�egociant prices pi,t=2017 are
revealed around May 2018, we calculate the percent-
age error as

ei;t¼2017 ¼ p̂i;t¼2017 � pi;t¼2017

� ��
pi;t¼2017:

Table 6 shows the estimated and actual ex-n�ego-
ciant prices for the 2017 vintage and their percent-
age errors (except for Petit Mouton whose
estimation cannot be made using Model 9 due to
its missing barrel score observation). The mean
absolute percentage error is 9.19% with a standard
deviation of 7.17%. Model 9 estimates the prices of
three wines with less than 1% error, 12 wines with
less than 5% error, and 26 wines (corresponding to
two-thirds of our estimations) with less than 10%
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error in absolute terms. The most accurate predic-
tion belongs to Chateau Grand Puy Lacoste with an
absolute percentage error of 0.28%, whereas the
least accurate one belongs to Chateau Troplong
Mondot with 27.77%.
We compare our Model 9 estimations against the

most well-known publication in the area. The bench-
mark model relies on the approach of Ashenfelter
(2008) that makes use of weather information alone.
The benchmark model (denoted Model B0) which is
calibrated for t 2 {2001, . . ., 2016} using the within
regression is:

Model B0 : log pi;t
� �

¼ a0 þ a1log mi;t

� �þ a2log ri;t
� �þ li þ ei;t;

where li represents the time-invariant chateau char-
acteristics. This benchmark model yields a mean
absolute percentage error of 34.38% for the 2017 vin-
tage. Therefore, we conclude that Model 9 with a
mean absolute percentage error of 9.19% significantly
outperforms the most well-known academic bench-
mark.
We next replicate the out-of-sample testing for the

2015 and 2016 vintages in order to demonstrate
robustness. We calibrate Model 9 in Equation (1) and
the benchmark model using data up until vintage t–1
in order to generate the prices of vintage t 2 {2015,
2016}. Table 7 demonstrates that Model 9 achieves
significantly smaller mean absolute percentage error
values than the benchmark Model B0. Average error

Figure 6 The Fit Between the Actual and Estimated ex-n�egociant Prices for the Vintages between 2002 and 2017 using Model 9 Where N = 623
[Color figure can be viewed at wileyonlinelibrary.com]

Table 5 Results of Regression in Quantiles using Model 9

Regression percentiles Price thresholds (€) Fitted line R2

Below 25th percentile price ≤ 45.86 y = 1.0600x 97.36%
Between 25th and 50th percentile 45.86 < price ≤ 72.18 y = 1.0041x 95.00%
Between 50th and 75th percentile 72.18 < price ≤ 143.90 y = 1.0091x 95.42%
Above 75th percentile price> 143.90 y = 0.9989x 94.81%
All observations y = 1.0002x 94.87%
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during 2015–2017 is 11.12% in our Model 9 and
39.46% in the benchmark model B0. Details of the out-
of-sample testing of Model 9 for vintages 2015–2016
are provided in Appendix.
Figure 7 shows the distribution of mean abso-

lute percentage errors for the 2015, 2016, and 2017
vintages across chateaus. Estimations for Chateau
Duhart Milon yield the highest accuracy with a
mean absolute percentage error of 3.12%, whereas
the mean absolute percentage error for Chateau
Mission Haut Brion is 21.99% leading to the low-
est accuracy. The standard deviation of mean
absolute percentage errors across chateaus is
4.59%.
Model 9 does not eliminate the estimation

errors completely despite its superior accuracy
over the academic benchmark. Moreover, one can
see from Table 7 and Figure 7 that the estimation
accuracy of Model 9 shows variation across both
vintages and chateaus. Therefore, it is worth

mentioning that there are two factors that make
the task of price estimation challenging; these are
related with the fine wine market microstructure
and the en primeur system. The first factor is that
n�egociants have trade allowances (purchase
rights) from the chateaus. If n�egociants do not
exercise this right, then they may not be able to
buy the same amount of wine futures in the fol-
lowing year. As a result, n�egociants might buy an
overpriced wine at times just to be able to main-
tain their allowance. The second factor is that
chateaus create an impression of scarcity by not
revealing the exact production quantity into the
market.
Going forward, Liv-ex has determined to publish

our prices as “realistic prices” prior to each en pri-
meur campaign. It is important to note that our
model allows for estimations to be made approxi-
mately 1 month before the actual ex-n�egociant prices
are revealed since all explanatory observations can
be collected by April of each calendar year and
wine futures trade starts around May. Given the
accuracy and strength of our model, Liv-ex execu-
tives expect buyers to rely on our realistic prices in
determining which wines to purchase during the en
primeur campaign. They also hope that the market
prices are anchored to our realistic prices. The
adoption of our Model 9 by the financial exchange
shows the impact of our study’s contribution to the
practice in the wine industry.

Table 6 The Estimated and Actual ex-n�egociant Prices for the 2017 Vintage and Their Percentage Errors

Chateau (i)

Estimated
price (€)
p̂i;t¼2017

Actual
price (€)
pi ;t¼ 2017

Error (%)
ei ;t¼ 2017 Chateau (i)

Estimated
price (€)
p̂i;t¼ 2017

Actual
price (€)
pi ;t¼2017

Error (%)
ei ;t¼ 2017

Angelus 269.38 276.00 –2.40% Lafleur 425.56 460.00 –7.49%
Ausone 505.77 480.00 5.37% Leoville Barton 63.33 52.80 19.94%
Beychevelle 46.62 52.80 –11.70% Leoville Las Cases 153.04 144.00 6.27%
Calon Segur 56.51 60.00 –5.81% Leoville Poyferre 57.91 54.00 7.25%
Carruades Lafite 134.42 135.00 –0.43% Lynch Bages 79.08 75.00 5.44%
Cheval Blanc 474.80 432.00 9.91% Margaux 368.55 348.00 5.90%
Clarence (Bahans) Haut Brion 101.56 102.00 –0.43% Mission Haut Brion 285.67 240.00 19.03%
Clinet 63.92 56.00 14.14% Montrose 92.38 96.00 –3.77%
Clos Fourtet 73.51 72.00 2.09% Mouton Rothschild 368.55 348.00 5.90%
Conseillante 133.17 120.00 10.97% Palmer 224.34 192.00 16.84%
Cos d’Estournel 105.30 108.00 –2.50% Pape Clement 59.77 61.20 –2.33%
Ducru Beaucaillou 126.07 120.00 5.06% Pavie 245.02 276.00 –11.23%
Duhart Milon 49.81 48.00 3.77% Pavillon Rouge 103.25 132.00 –21.78%
Eglise Clinet 206.16 168.00 22.72% Pichon Baron 103.25 96.00 7.55%
Evangile 154.83 180.00 –13.98% Pichon Lalande 108.68 90.00 20.76%
Grand Puy Lacoste 52.65 52.80 –0.28% Pontet Canet 97.81 80.00 22.27%
Gruaud Larose 47.82 51.75 –7.60% Smith Haut Lafitte 69.56 67.20 3.51%
Haut Bailly 73.71 72.00 2.37% Troplong Mondot 91.99 72.00 27.77%
Haut Brion 380.38 348.00 9.30% Vieux Chateau Certan 181.57 168.00 8.08%
Lafite Rothschild 438.97 420.00 4.52%

Mean Absolute % Error = 9.19% Min. of Absolute % Error = 0.28%
SD of Absolute % Errors = 7.17% Max. of Absolute % Error = 27.77%

Table 7 Summary of Out-Of-Sample Testing of Model 9 and the
Benchmark Model B0

Vintage

Mean absolute % error

Model 9 Model B0

2015 12.74% 38.20%
2016 11.42% 45.79%
2017 9.19% 34.38%
Average 11.12% 39.46%
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3.4. Value of Barrel Scores, Market Index, Variable
Definitions, and Positive Interaction Term
Section 3.3 establishes that Model 9 significantly out-
performs the benchmark Model B0 by incorporating
(1) Liv-ex 100 as market index, (2) barrel scores, (3)
variable definitions based on comparison of two con-
secutive vintages, and (4) positive interaction between
temperature and Liv-ex 100 index. This section pro-
vides a breakdown of these contributions in the out-
of-sample performance. We first define the following
benchmark models:

Model B1 : log pi;t
� �

¼ a0 þ a1log mi;t

� �þ a2log ri;t
� �þ a3log lmar

t

� �
þ li þ ei;t;

Model B2 : log pi;t
� �

¼ a0 þ a1log mi;t

� �þ a2log ri;t
� �þ a3log lmar

t

� �
þ a4si;t þ li þ ei;t;

where li represents the time-invariant chateau charac-
teristics and the coefficients are estimated using the
within regression. Benchmark Model B1 adds the Liv-
ex 100 index to Model B0 in order to demonstrate the
value of the market index, and the benchmark Model
B2 adds the barrel scores to Model B1 in order to
show the value of the tasting experts. It is important
to note that Model B2 uses all four explanatory factors
investigated in this study in the form of level data.
Recall that Model 7 (presented in Table 4), on the
other hand, uses the same four factors where the vari-
ables are defined based on the comparison of two con-
secutive vintages instead of level data. Therefore,
comparing the out-of-sample performance of Model 7
with that of Model B2 represents the value of our vari-
able definitions as explained in Section 3.1. Finally,
we compare the performance of Model 9 to Model 7
in order to demonstrate the value of positive interac-
tion term between temperature and market index
variables. We compute our estimated prices for vin-
tage t by calibrating models B1, B2, and 7 using data
up until vintage t – 1 where t 2 {2015, 2016, 2017}.
Table 8 compares the out-of-sample testing of models
B0, B1, B2, 7, and 9.
We find that the addition of the Liv-ex 100 index to

the weather variables improves the out-of-sample
performance by 20.97%. Inclusion of barrel scores fur-
ther accounts for another 3.17% improvement. More-
over, our unique variable definitions enhance the
accuracy by 3.65%—this result is consistent with the
pricing practice we explained earlier that the ex-n�ego-
ciant price of a new vintage is determined by compar-
ing the values of its explanatory factors with the
values of the previous vintage. Therefore, Model 7
using variables defined based on the change in their

values across two consecutive vintages shows a better
out-of-sample performance than Model B2 using level
data. As explained before, the positive impact of the
variable definition in Model 7 stems from the opera-
tional decisions of n�egociants (who have to turn
around its cash investments) and chateaus (who have
to replace its wine in the cellar with the upcoming
vintage’s wine). Finally, the positive interaction term
between temperature and Liv-ex 100 brushes up the
performance by 0.55%.

4. Robustness

4.1. Lasso (Least Absolute Shrinkage and
Selection Operator) for Variable Selection
We begin our robustness analysis by conducting a
variable selection analysis. Lasso is a popular
machine learning methodology for variable selection
relying on the sparsity principle. Conceptually, Lasso
methods select the most-relevant variables among a
broad set of potentially relevant variables with the
aim to balance the in-sample fit and the out-of-sample
prediction accuracy. On the other hand, traditional
approaches like OLS regression can yield good in-
sample performance (e.g., high R2 values) with a rela-
tively poorer prediction performance in an out-of-
sample. We find that the optimal variable selection
according to the Lasso analysis features the exact
same variables as Model 9. This confirms the model
selection presented in 3.2.
Ahrens et al. (2020) provide a comprehensive dis-

cussion of various Lasso applications along with the
use of lassopack module of Stata featured in Ahrens
et al. (2018). The square-root Lasso with theory-driven
rigorous penalization, as described in Belloni et al.
(2011, 2012, 2014, 2016), is known to control overfit-
ting and to guarantee consistent out-of-sample pre-
diction performance (Ahrens et al. 2020). The square-
root Lasso estimates the coefficients that minimize the
following expression:

b̂ ffiffiffiffiffiffiffi
lasso

p ¼ argmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

yi � xTi b
� �2s

þ �

n

Xp
j¼1

wj bj

��� ���;
where the first term is the square root of mean
squared error and the second term is a penalty term
with the overall penalty level k and individual pen-
alty loading wj for each regressor under n observa-
tions and p regressors. The square-root Lasso with
theory-driven rigorous penalization approach yields
the optimal overall penalty level k = (1.1)(n)1/2Φ-1(1 –
0.05/(log(n)p)), where Φ-1(�) is the inverse of the stan-
dard normal cumulative distribution, and computes
the individual penalty loading wj using an iterative
algorithm (see Ahrens et al. 2020).
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The square-root Lasso with theory-driven rigorous
penalization is employed in order to find the optimal
selection among 33 explanatory variables investigated
in this study. Section 3.1 describes the four main
explanatory variables, that is, Dmi,t, Dri,t, Dsi,t, Dlt, and
the six positive interaction terms, that is, (mri,t)

+,
(mli,t)

+, (msi,t)
+, (rli,t)

+, (rsi,t)
+, (lsi,t)

+. The remaining
variables are described in the following subsection.

4.1.1. Definitions of Other Explanatory Variables.
The remaining 23 explanatory variables examined in
this study are as follows:

Quadratic variables. We define quadratic terms of the
changes in temperature, rainfall, barrel score, and
Liv-ex 100 variables in order to account for potential
nonlinearity in the form of convexity/concavity,
denoted by (Dmi,t)

2, (Dri,t)
2, (Dsi,t)

2, and (Dlt)
2, respec-

tively.
Negative interaction variables. We define negative

interaction variables in order to account for possible
negative synergies stemming from multiple negative
news. These variables serve the opposite purpose of
positive interaction variables. The following six
interaction variables combine the pairwise negative

Figure 7 Mean Absolute Percentage Errors for the 2015, 2016, and 2017 Vintages Across Chateaus [Color figure can be viewed at wileyonlinelibra
ry.com]

Table 8 Summary of Out-Of-Sample Testing of Models B0, B1, B2, 7, and 9

Vintage

Mean absolute % error

Model B0 Model B1 Model B2 Model 7 Model 9

2015 38.20% 18.57% 16.10% 10.12% 12.74%
2016 45.79% 21.24% 16.20% 12.29% 11.42%
2017 34.38% 15.66% 13.66% 12.61% 9.19%
Average 39.46% 18.49% 15.32% 11.67% 11.12%
D Liv-ex 100 (B0–B1) 20.97%
D barrel score (B1–B2) 3.17%
D variable definition (B2–7) 3.65%
D positive interaction (7–9) 0.55%
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effects of temperature and rainfall (mri,t)
-, tempera-

ture and Liv-ex 100 (mli,t)
-, temperature and barrel

score (msi,t)
-, rainfall and Liv-ex 100 (rli,t)

-, rainfall
and barrel score (rsi,t)

-, and Liv-ex 100 and barrel
score (lsi,t)

-:

Change in exchange rates. We define Dfx_$t as the log-
arithmic change in the USD ($) to Euro (€) exchange
rate between the en primeur campaign of the previous
vintage and shortly before the en primeur campaign of
the new vintage, that is, Dfx_$t = log(fx_$t

mar/fx_$t-
1
may) where fx_$t-1

may is the value of $/€ rate around
the en primeur campaign of vintage t – 1 (correspond-
ing to May of year t), and fx_$t

mar is the value of $/€
rate in March prior to the en primeur campaign of vin-
tage t (corresponding to March of year t + 1). Simi-
larly, we define Dfx_£t = log(fx_£t

mar/fx_£t-1
may) as the

logarithmic change in the Pound Sterling (£) to Euro
(€) exchange rate. These exchange rate variables aim
to capture any effect that currency fluctuations may
have on prices.
Left Bank dummy. We define a binary variable lbi

that takes a value of 1 if chateau i is located in the
Left Bank region and a value of 0 if it is in the
Right Bank region. This variable aims to account
for the effect that grape varieties may have on the
prices as the wines made by the Left Bank chateaus
are primarily dominated by Cabernet Sauvignon,
whereas the Right Bank chateaus focus more on
Merlot.
The 1855 Bordeaux Classification (for Left Bank) vari-

ables. The 1855 Bordeaux Classification is an official
ranking system that was put in place by Napoleon
III in 1855 that has been in effect since then. This
ranking system categorizes the chateaus according
to their reputation into five groups from first to fifth
growths where the first growths represent the most
reputable chateaus. We define five binary variables
(firsti, secondi, thirdi, fouthi, fifthi) that take a value of
1 if chateau i belongs to the corresponding category
and a value of 0 if it does not. These five binary

variables aim to capture the reputation effects on
prices. Note that the 1855 Bordeaux Classification
spans Left Bank chateaus only. Table 9 lists the cha-
teaus included in our sample according to this rank-
ing system.

The Saint-Emilion Classification (for Right Bank) vari-
ables. We use the Saint-Emilion Classification for the
Right Bank chateaus. Like the 1855 Bordeaux Classifi-
cation, the Saint-Emilion Classification categorizes the
notable Right Bank chateaus based on their reputa-
tion. We define a binary variable for each category,
that is, Premier Grand Cru Classe A (pgai) and Pre-
mier Grand Cru Classe B (pgbi) that take a value of 1 if
chateau i belongs to the corresponding category and a
value of 0 if it does not. Table 9 lists the chateaus
included in our sample according to this ranking
system.
Other chateau variables. In addition to the time-in-

variant classification variables above, we define
three additional chateau-related variables that are
time-variant. The first variable is the change in
chateau’s annual trade volume Dvoli,t = voli,t – voli,t-
1 where voli,t describes the percentage of the total
trade volume that belongs to chateau i in year t.
The second variable is the change in chateau’s
annual trade value Dvali,t = vali,t – vali,t-1 where
vali,t describes the percentage of the total trade
value that belongs to chateau i in year t. These
two variables capture the impact of chateau popu-
larity in terms of trade volume and value. The
third variable is the change in the number of
unique wines produced by chateau i between two
consecutive vintages, that is, Dunqi,t = unqi,t – unqi,t-
1 where unqi,t is the number of unique wines pro-
duced by chateau i in year t. This information is
collected through Liv-ex.

4.1.2. Results from the Lasso Analysis. Table 10
presents the results of the square-root Lasso with
theory-driven rigorous penalization using the 33

mri;t
� ��¼ Dmi;t

�� ��� Dri;t ifmi;t\mi;t�1 and ri;t [ ri;t�1; mri;t
� ��¼ 0 if otherwise;

mli;t
� ��¼ Dmi:t � Dlt ifmi;t\mi;t�1 and lmar

t \l
may
t�1 ; mli;t

� ��¼ 0 if otherwise;

msi;t
� ��¼ Dmi;t � Dsi;t ifmi;t\mi;t�1 and si;t\si;t�1; msi;t

� ��¼ 0 if otherwise;

rli;t
� ��¼ Dri;t � Dltj jif ri;t [ ri;t�1 and lmar

t \l
may
t�1 ; rli;t

� ��¼ 0 if otherwise;

rsi;t
� ��¼ Dri;t � Dsi;t

�� ��if ri;t [ ri;t�1 and si;t\si;t�1; rsi;t
� ��¼ 0 if otherwise;

lsi;t
� ��¼ Dlt � Dsi;t if l

mar
t \l

may
t�1 and si;t\si;t�1; lsi;t

� ��¼ 0 if otherwise:
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explanatory variables. For selected variables, b̂ ffiffiffiffiffiffiffi
lasso

p
represents the coefficient estimates using the
square-root Lasso regression which induces biased
estimates (due to the penalty term). Therefore,
Lasso methods are ideal for variable selection but
not for coefficient estimation. Once the optimal set
of variables is determined, the OLS regression pro-
vides the unbiased coefficient estimates for the
selected variables.
It is important to highlight that the variables

selected by the Lasso method are identical to the vari-
ables of Model 9: Dmi,t, Dri,t, Dsi,t, Dlt, and (mli,t)

+. This
is a strong support for Model 9 because the Lasso
analysis identifies this optimal selection among a
broad set of 33 explanatory variables corresponding
to 233 selection combinations (equivalent to
8,589,934,592 unique models). Moreover, the post-es-
timation OLS coefficients b̂OLS following the Lasso
analysis are equal to the coefficient estimates of
Model 9 as presented in Table 4; this is an expected
result because the optimal Lasso selection and Model
9 both feature the same variables. As a result, the
Lasso analysis confirms that Model 9 features the
optimal set of variables.
The Lasso analysis does not select the negative

interaction terms. This implies that negative news
does not lead to dramatic price reductions because of
the reputation of Bordeaux chateaus. Lasso analysis
also does not select the quadratic terms. This suggests
that a linear specification is sufficient in estimating
the ex-n�egociant prices.

4.2. Robust Regression
As can be seen in Figure 3, ex-n�egociant prices of
the highly anticipated vintages like 2003, 2005, and

Table 9 Chateaus According to the 1855 Bordeaux Classification and the Saint-Emilion Classification

The 1855 Bordeaux classification (for left bank) The Saint-Emilion classification (for right bank)

First growth Fourth growth Premier Grand Cru Classe A
Haut Brion Beychevelle Angelus
Lafite Rothschild Duhart Milon Ausone
Margaux Fifth Growth Cheval Blanc
Mouton Rothschild Grand Puy Lacoste Pavie
Second Growth Lynch Bages Premier Grand Cru Classe B
Cos d’Estournel Pontet Canet Clos Fourtet
Ducru Beaucaillou Unclassified Troplong Mondot
Gruaud Larose Carruades Lafite Unclassified
Leoville Barton Clarence (Bahans) Haut Brion Clinet
Leoville Las Cases Haut Bailly Conseillante
Leoville Poyferre Mission Haut Brion Eglise Clinet
Montrose Pape Clement Evangile
Pichon Baron Pavillon Rouge Lafleur
Pichon Lalande Petit Mouton Vieux Chateau Certain
Third Growth Smith Haut Lafitte
Calon Segur
Palmer

Table 10 The results of the square-root Lasso with theory-driven
rigorous penalization using heteroscedasticity-robust errors.
The optimal overall penalty level k is 96.007

Variable Selected (Y/N)

Square-root
Lasso

Coefficient, b̂ ffiffiffiffiffiffiffiffi
lasso

p
Post-estimation

OLS Coefficient, b̂OLS

Int. Included –0.071 –0.086
Dmi,t Y 0.267 0.568
Dri,t Y –0.029 –0.060
Dsi,t Y 0.026 0.032
Dlt Y 0.598 0.835
(mri,t)

+ N – –
(mli,t)

+ Y 52.819 54.318
(msi,t)

+ N – –
(rli,t)

+ N – –
(rsi,t)

+ N – –
(lsi,t)

+ N – –
(Dmi,t)

2 N – –
(Dri,t)

2 N – –
(Dsi,t)

2 N – –
(Dlt)

2 N – –
(mri,t)– N – –
(mli,t)– N – –
(msi,t)

– N – –
(rli,t)

� N – –
(rsi,t)– N – –
(lsi,t)– N – –
Dfx_$t N – –
Dfx_£t N – –
lbi N – –
firsti N – –
secondi N – –
thirdi N – –
fouthi N – –
fifthi N – –
pgai N – –
pgbi N – –
Dvoli,t N – –
Dvali,t N – –
Dunqi,t N – –
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2009 feature greater variation. We replicate our
analysis presented in sections 3.2–3.3 using robust
regression in order to ensure that our statistical
results are robust to outlying observations in the
sample. Our approach first determines if any outly-
ing observation needs to be dropped from the anal-
ysis based on Cook’s D—no observations are
eventually dropped in our sample. It then performs
iterative regressions using Huber weights followed
by biweights until the weights of observations con-
verge (Li 1985); this approach assigns smaller
weights to outliers to mute their effect in the
results. Table 11 shows the robust regression
results for Models 1 – 16 and we find that all sta-
tistical inferences remain intact. This suggests that
our findings are robust to outliers.
Using robust regression, we next replicate the

out-of-sample testing of Model 9. We follow the
same approach as described in Section 3.3 with one
difference: we use the robust regression coefficients
instead of the OLS regression coefficients. Table 12
compares the accuracy of these two methodologies.
By looking at these highly similar results, we can
conclude that our approach continues to yield
accurate estimations using a robust regression
methodology.

4.3. Hierarchical Linear Modeling
Our data are grouped in chateaus that may be featur-
ing some group-level effects that OLS regression does
not capture. To account for this issue, we replicate our
analysis pertaining to Model 9 using linear mixed-ef-
fects regression where each chateau represents a
group. For generality, we allow for varying intercept
and varying coefficients at group-level for all vari-
ables used in Model 9. This revised version of Model
9 can be represented as follows:

Dpi;t ¼ a0 þ b0;i þ a1 þ b1;i
� �

Dmi;t þ a2 þ b2;i
� �

Dri;t
þ a3 þ b3;i
� �

Dsi;t þ a4 þ b4;i
� �

Dlt
þ a5 þ b5;i
� �ðmli;tÞþ þ ei;t;

where ak represents the fixed (average) effect and
bk,i represents the random effect for chateau i such
that bk,i ~ N(0, rk

2) for k 2 {0,. . ., 5}. We use maxi-
mum likelihood in order to estimate the parameters
ak and rk

2 for each k, along with re
2 denoting the

variance for ei,t. Table 13 shows the mixed-effects
regression results.
The fixed (average) effect estimates, denoted ak, are

very close to the OLS estimates of Model 9 presented
in Table 4. However, the likelihood ratio test favors
the mixed-effects regression over the standard linear
regression at 1% significance level meaning that there
exist group-level random effects. From the rk

2 esti-
mates for variance, we can conclude that the effects of

temperature, Liv-ex 100 index and their positive inter-
action vary across chateaus. This means that ex-n�ego-
ciant prices across chateaus respond differently to
these factors. Before we explain our interpretation of
this finding, first recall from Figure 3 that the prices
of hyped vintages like 2003, 2005, 2009 show great
variation across chateaus. In those years, both temper-
ature and Liv-ex 100 variables show improvement
(Dmi,t, Dlt > 0) which triggers the positive interaction
term (mli,t)

+> 0. Therefore, when varying coefficients
for variables are allowed via mixed-effects modeling,
temperature and Liv-ex 100, along with their positive
interaction, account for the price variations across
chateaus, especially for the highly anticipated vin-
tages.
We next investigate whether the mixed-effects

modeling leads to any improvement over OLS in
terms of the out-of-sample performance. We calibrate
the mixed-effects version of Model 9 (presented
above) using data up until vintage t – 1 to generate
the prices of vintage t 2 {2015, 2016, 2017}. Table 14
compares the out-of-sample performance of OLS with
that of the mixed-effects regression. One can see that
no improvement is achieved on average using mixed-
effects modeling. This is an expected result given that
our variable definitions, resembling a first-difference
approach, already eliminate most of the group-level
effects by comparing two consecutive vintages. There-
fore, we can conclude that out-of-sample performance
of our OLS approach is robust to group-level mixed
effects.

4.4. Hierarchical Bayes Modeling
This section presents a Bayesian alternative to hierar-
chical modeling of the group-level effects. In Sec-
tion 4.3, ak, rk

2, and re
2 are treated as fixed unknown

parameters which are estimated using maximum like-
lihood. We next adopt a Bayesian alternative which
treats those parameters as random variables. We
define a normal likelihood model as follows:

Dpi;t �N ða0 þ b0;i þ ða1 þ b1;iÞDmi;t þ ða2 þ b2;iÞDri;t
þ ða3 þ b3;iÞDsi;t þ ða4 þ b4;iÞDlt þ ða5
þ b5;iÞðmli;tÞþ; re2Þ

where the prior and hyperprior distributions are
ak ~ N(0, 10,000), bk,i ~ N(0, rk

2), rk
2 ~ Inv-Gamma

(0.01, 0.01) for k 2 {0, . . ., 5}, and re
2 ~ Inv-Gamma

(0.01, 0.01). We use Metropolis-Hastings and Gibbs
sampling to simulate the posterior distributions.
Table 15 shows the estimated mean values of the pos-
terior distribution parameters ak, rk

2, and re
2.

One can notice that the mean values of ak are once
again close to Model 9’s OLS estimates given in
Table 4. This further reassures that our variable defi-
nitions resembling a first-difference approach account
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for the group-level effects, therefore, using OLS
methodology is suitable in our study.
We demonstrate the out-of-sample performance

using hierarchical Bayes and compare with that using
OLS. Like the previous section, calibration of the
model uses data up until vintage t – 1 to generate the
prices of vintage t 2 {2015, 2016, 2017}. Table 16 pre-
sents the results. We find that hierarchical Bayes mod-
eling does not bring any improvement over OLS
regression in our study.

4.5. Dependent Variable Retransformation
When computing the prices of vintage t in Section 3.3,
we first calibrate Model 9 (see Equation (1)) using
data up until vintage t – 1, then compute the estima-
tions using Equation (2). This procedure involves
retransformation of a logarithmic dependent variable
back to its untransformed scale. In this section, we
revise Equation (2) using the following two alterna-
tive methods that can account for potential bias due
to this retransformation: The normal theory estima-
tion and the smearing estimation in Duan (1983).
Normal theory estimation assumes that errors in

Equation (1) are normally distributed. In light of this
assumption, we revise Equation (2) as

p̂Ni;t ¼ exp D̂pi;t þ r̂2
�
2

� �
pi;t�1; ð3Þ

where r̂2 denotes the mean squared error in Equation
(1). Duan’s smearing estimation, on the other hand, is
a nonparametric method which does not require any
knowledge on the error distribution. For the smearing
estimates, we revise Equation (2) as follows:

p̂Di;t ¼ N�1
X
i

X
t

exp êi;t
� �" #

exp D̂pi;t
� �

pi;t�1; ð4Þ

where êi;t denotes the residual for vintage t of chateau
i in Equation (1).
Table 17 compares the out-of-sample performance

of our original estimates p̂i;t utilizing Equation (2)

Table 12 Summary of Out-Of-Sample Testing of Model 9 using OLS
and Robust Regression

Vintage

Mean absolute % error

OLS Robust regression

2015 12.74% 13.39%
2016 11.42% 11.69%
2017 9.19% 9.29%
Average 11.12% 11.46%

Table 13 Mixed-Effects Regression Results for the Dependent Variable
Dpi,t

ak rk
2 re

2

Int. –0.085
–9.12***

� 0

Dmi,t 0.564
3.18***

0.2686

Dri,t –0.060
–2.69***

� 0

Dsi,t 0.032
9.13***

0.0001

Dlt 0.832
12.19***

0.0298

(mli,t)
+ 53.781

13.41***
287.5531

ei,t 0.0366

LR test
(Ho: rk

2 = 0)
59.35***

N 623

The values under the ak column denote the fixed-effect estimates and
their z-statistics (italic) where *, **, and *** denote statistical significance
at 10%, 5%, and 1%, respectively. The values under the rk

2 column
denote the variance estimates of random effects. The value under the re

2

column denotes the variance estimate of residuals.

Table 14 Summary of Out-Of-Sample Testing of Model 9 Using OLS
and Mixed-Effects Regression

Vintage

Mean absolute % error

OLS Mixed-effects

2015 12.74% 12.88%
2016 11.42% 11.39%
2017 9.19% 9.15%
Average 11.12% 11.14%

Table 15 Hierarchical Bayes Estimation Results for the Dependent
Variable Dpi,t

ak rk
2 re

2

Int. –0.084 0.0021
Dmi,t 0.559 0.1834
Dri,t –0.064 0.0054
Dsi,t 0.032 0.0011
Dlt 0.826 0.0416
(mli,t)

+ 53.295 358.3151
ei,t 0.0367
MCMC iterations 10,000 after a burn-in of 2500

The values represent the estimated mean values of the posterior
distribution parameters ak, rk

2, and re
2.

Table 16 Summary of Out-Of-Sample Testing of Model 9 using OLS
and Hierarchical Bayes Modeling

Vintage

Mean absolute % error

OLS Hierarchical Bayes

2015 12.74% 12.55%
2016 11.42% 12.22%
2017 9.19% 9.58%
Average 11.12% 11.45%
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with that of the normal theory estimates p̂Ni;t utilizing
Equation (3) and the smearing estimates p̂Di;t utilizing
Equation (4) for vintages 2015–2017. We find that p̂i;t
yields the highest accuracy for the 2017 estimates,
whereas p̂Ni;t and p̂Di;t achieve better accuracy for vin-
tages 2015 and 2016. This suggests that our original
estimates p̂i;t do not feature a systematic bias.

5. Conclusions and Impact of the
Study

Our study makes several contributions that have sig-
nificant practical implications for the wine industry.
We develop an empirical model that determines the
appropriate market prices of the infamous Bordeaux
wines. Our first contribution involves identifying four
primary determinants of the price fluctuations from
one vintage to another at the highest statistical signifi-
cance. Two of these four determinants are weather
related: The average of daily maximum temperatures
and the total precipitation during the growing season
of the wine. The third factor is the appreciation in the
Liv-ex 100 index as an indicator of the fine wine mar-
ket. The fourth determinant is the barrel scores estab-
lished by the tasting experts. In addition to these four
factors, our statistical method employs an interaction
term that captures the combined benefits from an
increase in the temperatures and the improvement in
the market conditions from the previous vintage. This
interaction enables the estimates to capture the hype
effect in phenomenal vintages.
Our second contribution stems from the unique

variable definition in our statistical analyses.
Rather than using level data, our analysis relies
on vintage-to-vintage comparison. We show that
our variable definitions enhance the accuracy of
estimated prices by 3.65%. This technical contribu-
tion comes from practice and stems from the oper-
ational planning decisions of n�egociants and
chateaus. N�egociants buy the wine from chateaus
and make a financial investment in futures. They
need to circulate this cash by selling all of their
futures contracts in order to collect their invest-
ment back and reinvest in the next vintage. Simi-
larly, chateaus have to clear the space in their

winemaking facilities in order to store the next
vintage’s barrels. As a result, the industry operates
with the mindset of a 1-year planning horizon.
This operational phenomenon influences the
adjustments in market prices. However, there are
exceptions to this 1-year planning phenomenon.
Selling wine in advance is a form raising capital
to finance wine production operations. Some cha-
teaus that have good financial standing do not
need to sell their wines in advance. For example,
Chateau Latour is a financially well-off winemaker
that has stopped selling its wine in the en primeur
market beginning from 2012 in order to benefit
from the increase in its wines’ value.
Third, while earlier publications aim to explain

wine prices, our study accomplishes the more chal-
lenging task of estimating wine prices. To our knowl-
edge, there is only one publication that estimates fine
wine prices, and our proposed method improves esti-
mation performance dramatically. Thus, our study
makes a significant contribution to the literature.
The estimation performance of our proposed

approach is extraordinary. This can be seen from the
fit between our estimated market prices and the real-
ized prices that features an R2 of 94.87% and a slope
of 1.0002. Through a comprehensive analysis, we
demonstrate that our methodology and results are
robust. Our robustness analyses include quantile
regression, Lasso analysis, robust regression, hierar-
chical linear modeling, hierarchical Bayes modeling,
and dependent variable retransformation. These vari-
ous approaches show that our initial approach con-
tinue to yield the most accurate price estimates.
The model leads to an accuracy that the indus-

try has not seen before. This is evident from the
statement of Neil Taylor, vice president of data at
Liv-ex where he claims that our study is “the
most accurate work they have seen internally and
externally.” As a result, Liv-ex determined to
release our ex-n�egociant price estimations as “realis-
tic prices” to all wine industry participants and
individual collectors.
The implication of identifying barrel tasting scores

as a factor in determining realistic prices is significant
in practice. Buyers often see a barrel tasting score
from influential tasting experts, however, these barrel
scores are not easily translated into prices. Our
approach provides a bridge in converting these barrel
scores into prices while incorporating the information
associated with the growing weather conditions and
the evolution of market dynamics.
Our fourth contribution is that our realistic prices

lead to a transparent market for fine wines. Buyers
(e.g., wine merchants, distributors, restaurateurs and
collectors) can now compare our realistic price esti-
mates with the realized market prices in order to

Table 17 Summary of Out-Of-Sample Testing of Model 9 using p̂i ;t ,
pNi ;t , and pDi;t

Vintage

Mean absolute % error

p̂i ;t p̂Ni ;t p̂Di ;t

2015 12.74% 11.31% 11.31%
2016 11.42% 10.22% 10.23%
2017 9.19% 10.45% 10.44%
Average 11.12% 10.66% 10.66%
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determine whether a wine is underpriced or over-
priced. As a result of our realistic prices, the fine wine
market can invest in futures in confidence, leading to
a more efficient marketplace.
Fifth, our study provides insights into the wine-

maker’s ex-chateau price decision which reflects the
selling price of the wine to n�egociants. Our realistic
price is an estimate of the market price that the
wine will move to the downstream in the supply
chain. Using our realistic price estimate, the wine-
maker can then estimate the potential margin and
determine the terms of the advance selling agree-
ment with the n�egociant. Thus, our realistic price
estimates are helpful in determining ex-chateau
price decisions.
Our findings provide valuable insights for future

academic research. Our variable definitions with
the change in value from the previous vintage
(and not from earlier vintages) resembles the
behavior in the modeling approaches observed in
Markov decision processes. One might intuit that
the memoryless property of the Markov decision
process is in place and wine prices jump from
their values in the earlier vintage release epoch to
new values in the next vintage release epoch.
Thus, our study provides justifications for future
research that might model wine prices using a
Markov process.
Our study opens new avenues for continued

research involving market prices for fine wines. We
expect other scholars to examine the same problem
with the goal of improving our methodology. For
example, our study relies on a single tasting expert
who might be influential for most chateaus and per-
haps not for all chateaus. Creating a composite tast-
ing score based on the tasting scores of various
critics can be one avenue for improvement in the
future. Our wine futures price estimations can also
shed light into the estimations for the bottled wine
prices. Moreover, our study can be expanded in
order to estimate benchmark wine prices in other
geographic regions. Another future research ques-
tion is whether n�egociants will anchor their prices
to these realistic prices. In the event that some n�ego-
ciants intentionally deviate from these benchmark
prices, new studies should identify the reasons
behind such reactions. Finally, we anticipate that
our realistic prices will trigger future research fea-
turing new bargaining models between the chateaus
and n�egociants.

5.1. Generalization to Other Products
While our study focuses on wine prices, our approach
can be generalized to other settings where pricing
decisions are influenced by weather conditions, mar-
ket fluctuations, and quality perceptions. It is known

that weather influences other products, and the
changing market conditions can alter consumers’
willingness to pay for various products. Moreover,
while barrel scores of tasting experts establish the ini-
tial quality perception in fine wines, similar but differ-
ent quality measures are established for other
agricultural products.
For olive oil, oleic acidity tests reveal information

about the quality of the oil. Specifically, a lower
degree of oleic acidity implies a higher value for the
olive oil. Such tests are applied immediately after har-
vest and pressing of olives. The results of these oleic
acidity tests can be used as a measure of quality
replacing the barrel tasting scores of our model.
Using similar weather and market variables, our
approach can be replicated to estimate the futures
prices for premium olive oil. Such estimations can be
particularly beneficial in determining both retail
prices and payments made to the olive growers from
processors. The application of our approach is not
limited to olive oil and it extends to other agricultural
products such as orange juice futures where weather
conditions, market fluctuations and quality percep-
tions (as in the brix levels of frozen concentrated
orange juice) are influential in the evolution of prices.
Wagyu beef, a crossbreed between Aberdeen

Angus and Japanese Kobe beef, is often considered to
be the finest beef in the US. Its status resembles that of
fine wine because of its rich flavors. Wagyu beef
prices are also impacted by weather fluctuations but
the relationship is reversed when compared with
agricultural products. Higher temperatures imply
lower quality product because the wagyu cattle
reduce their nutritional intake while increasing water
consumption. In the United States, upscale restaura-
teurs often pay premium prices for the finest wagyu
beef, creating a need for establishing a similar finan-
cial exchange to Liv-ex. Such a platform would benefit
from adopting our approach in order to develop
futures price estimations for wagyu beef.
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Appendix A
Predictive Power of Ashenfelter (2008)

Table A1 shows the estimated prices and the actual market prices for Bordeaux wines of vintages 1967–1972 as
reported in Ashenfelter (2008). It should be noted that Ashenfelter (2008) reports these prices relative to the value
of a benchmark portfolio, whose value is normalized to 1, to account for the differences in price levels among
chateaus.

Table A1 Prediction performance reported in Table 3 of Ashenfelter
(2008).

Vintage Estimated price Actual price Absolute % error

1967 0.49 0.77 36.36%
1968 0.21 0.28 25.00%
1969 0.29 0.75 61.33%
1970 0.60 0.83 27.71%
1971 0.53 0.61 13.11%
1972 0.14* 0.30 53.33%
Average 36.14%

*The estimated price for the 1972 vintage is reported as 0.014 in
Ashenfelter (2008). We believe that it was a typo and we use 0.14 in
order not to exacerbate the average percentage error

Out-of-Sample Testing of Model 9 for Vintages 2015–2016

Tables A2 and A3 present the estimated and actual ex-n�egociant prices and their percentage errors using Model 9
for the 2016 and 2015 vintages, respectively.

Table A2 The Estimated and Actual ex-n�egociant Prices for the 2016 Vintage and Their Percentage Errors

Chateau (i)

Estimated
price (€)
p̂i ;t¼2016

Actual
price (€)
pi ;t¼2016

Error
(%)

ei ;t¼2016 Chateau (i)

Estimated
price (€)
p̂i ;t¼2016

Actual
price (€)
pi;t¼2016

Error
(%)

ei ;t¼2016

Angelus 263.64 294.00 –10.33% Lafleur 412.19 450.00 –8.40%
Ausone 602.24 588.00 2.42% Leoville Barton 53.97 63.60 –15.14%
Beychevelle 59.11 56.60 4.43% Leoville Las Cases 156.74 180.00 –12.92%
Calon Segur 62.15 62.40 –0.39% Leoville Poyferre 62.70 66.00 –5.00%
Carruades Lafite 123.84 135.00 –8.27% Lynch Bages 98.51 96.00 2.61%
Cheval Blanc 547.17 552.00 –0.87% Margaux 383.81 420.00 –8.62%
Clarence (Bahans) Haut Brion 82.29 102.00 –19.33% Mission Haut Brion 319.65 336.00 –4.87%
Clinet 60.80 72.00 –15.56% Montrose 119.62 102.00 17.27%
Clos Fourtet 67.89 82.80 –18.01% Mouton Rothschild 409.15 420.00 –2.58%
Conseillante 118.22 150.00 –21.19% Palmer 216.72 240.00 –9.70%
Cos d’Estournel 150.02 120.00 25.01% Pape Clement 60.68 66.00 –8.06%
Ducru Beaucaillou 132.01 139.20 –5.16% Pavie 272.20 294.00 –7.41%
Duhart Milon 52.80 55.00 –3.99% Pavillon Rouge 101.95 114.00 –10.57%
Eglise Clinet 188.31 225.00 –16.30% Petit Mouton 108.68 132.00 –17.67%
Evangile 142.58 180.00 –20.79% Pichon Baron 99.07 114.00 –13.10%
Grand Puy Lacoste 51.14 60.00 –14.76% Pichon Lalande 102.29 120.00 –14.76%
Gruaud Larose 53.10 52.80 0.57% Pontet Canet 79.91 108.00 –26.01%
Haut Bailly 70.32 84.00 –16.28% Smith Haut Lafitte 63.93 76.80 –16.76%
Haut Brion 384.81 420.00 –8.38% Troplong Mondot 86.58 102.00 –13.71%
Lafite Rothschild 462.04 455.00 1.55% Vieux Chateau Certan 139.20 192.00 –28.08%

Mean Absolute % Error = 11.42% Min. of Absolute % Error = 0.39%
SD of Absolute % Errors = 7.34% Max. of Absolute % Error = 28.08%
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Table A3 The Estimated and Actual ex-n�egociant Prices for the 2015 Vintage and Their Percentage Errors

Chateau (i)

Estimated
price (€)
p̂i ;t¼2015

Actual
price (€)
pi;t¼2015

Error
(%)
ei;t¼2015 Chateau (i)

Estimated
price (€)
p̂i ;t¼2015

Actual
price (€)
pi;t¼2015

Error
(%)
ei ;t¼2015

Angelus 239.52 252.00 –4.95% Lafleur 425.46 420.00 1.30%
Ausone 449.70 540.00 –16.72% Leoville Barton 52.72 54.00 –2.36%
Beychevelle 50.16 50.40 –0.48% Leoville Las Cases 111.46 138.00 –19.23%
Calon Segur 47.25 53.00 –10.86% Leoville Poyferre 51.55 55.20 –6.61%
Carruades Lafite 104.49 120.00 –12.92% Lynch Bages 69.66 84.00 –17.07%
Cheval Blanc 449.70 540.00 –16.72% Margaux 316.18 384.00 –17.66%
Clarence (Bahans) Haut Brion 64.71 85.00 –23.87% Mission Haut Brion 173.75 300.00 –42.08%
Clinet 62.37 60.00 3.95% Montrose 93.77 102.00 –8.07%
Clos Fourtet 69.36 67.00 3.52% Mouton Rothschild 296.82 384.00 –22.70%
Conseillante 85.09 113.00 –24.70% Palmer 191.73 210.00 ––8.70%
Cos d’Estournel 92.10 120.00 –23.25% Pape Clement 59.67 58.80 1.49%
Ducru Beaucaillou 89.09 120.00 –25.76% Pavie 224.85 252.00 –10.77%
Duhart Milon 48.76 48.00 1.59% Pavillon Rouge 96.47 102.00 –5.42%
Eglise Clinet 170.18 180.00 –5.45% Petit Mouton 90.56 102.00 –11.22%
Evangile 119.76 150.00 –20.16% Pichon Baron 84.25 96.00 –12.24%
Grand Puy Lacoste 44.70 48.00 –6.88% Pichon Lalande 77.65 96.00 –19.12%
Gruaud Larose 43.05 46.75 –7.91% Pontet Canet 76.63 75.00 2.17%
Haut Bailly 55.14 66.00 –16.45% Smith Haut Lafitte 56.40 60.00 –6.01%
Haut Brion 316.18 385.00 –17.87% Troplong Mondot 69.59 82.80 –15.95%
Lafite Rothschild 323.97 420.00 –22.86% Vieux Chateau Certan 131.50 150.00 –12.33%

Mean Absolute % Error = 12.74% Min. of Absolute % Error = 0.48%
SD of Absolute % Errors = 8.86% Max. of Absolute % Error = 42.08%
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