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Service at Risk in Delivery Operations 
 

This paper examines disruption risks at fulfillment centers and develops risk mitigation strategies based 
on inventory stocking and delivery decisions. It considers a Fortune 150 firm whose delivery operations 
are designed to fulfill the orders from contracted business customers within the next day. The firm 
promises its customers that the probability of late deliveries exceeding a certain threshold will be limited. 
We coin this requirement as the Service-at-Risk (SaR) constraint. The firm proactively determines the 
inventory amount to be kept in each fulfillment center. If a disruption occurs, the firm determines the best 
way to deliver orders from its operational fulfillment centers and vendors under disruption length and 
demand uncertainty to minimize additional costs and satisfy the SaR constraint.  
 
This paper makes four main contributions. First, we find a surprising result that total inventory 
commitment can decrease with risk aversion when there exists a disruption possibility that impacts two 
nearby facilities together. Using actual data from the motivating firm, the numerical analysis 
demonstrates that this phenomenon exists in practice. Second, we define a new metric: The Risk 
Dispersion Index (RDI), which measures the dispersion in risk exposure across fulfillment centers. It 
leads to a lower and more balanced risk exposure in the firm’s delivery operations. Third, we find that a 
facility may elect to abandon its own customers to serve the customers of a disrupted facility; this 
behavior becomes more prominent under risk aversion. Fourth, the introduction of demand uncertainty 
leads to a smaller inventory commitment for a risk-neutral retailer.  
 
Keywords: disruption, service at risk, risk dispersion index, delivery operations 

 

1.  Introduction 

This paper examines disruption risks and develops risk mitigation strategies in order to sustain delivery 

operations. The study is motivated by a risk assessment project conducted at a Fortune 150 company, an 

online retailer focusing on business customers which represent the firm’s largest market segment in 

revenues. Successfully designing and managing delivery operations has become an important winning 

criterion in today’s highly competitive online retail industry. As a result, firms need to not only optimize 

their normal day-to-day operations, but also prepare proactively for disruptions interfering with their 

normal operations. In developing and executing such contingency plans, firms keep business and 

individual customers’ expectations of timely delivery at the core of their operations. If a firm is unable to 

deliver customer orders in a timely manner, it experiences an elevated level of customer dissatisfaction. 

Thus, businesses are pushed to set and advertise ambitious delivery deadlines in order to maintain their 

competitive edge and win customer orders. These delivery goals must be maintained even in the event of 

a disruption. While the traditional supply chain theory suggests minimizing the cost in developing and 

executing contingency plans in response to disruptive events, online retailers are aware that making 

deliveries on time is just as important, if not more, in order to keep their customers satisfied and/or avoid 
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penalties for late deliveries. Conversations with the executives at our motivating firm have helped us 

identify a new risk measure that limits the probability of late deliveries. 

Our paper conceptualizes this modern perspective by combining the traditional cost minimization 

approach with a novel “Service-at-Risk” (SaR) concept representing a firm’s desire to avoid late 

deliveries. We capture this intention with a chance constraint where the probability of late deliveries 

exceeding a threshold is limited with a tolerable probability. It is important to mention that our SaR 

concept differs from the traditional value-at-risk (VaR) and conditional value-at-risk (CVaR) approaches. 

While VaR and CVaR are designed to limit monetary losses, our SaR constraint specifically focuses on 

the on-time delivery performance, making it an operational constraint. This is a novel representation of 

service operations performance under disruption risk that is critical for firms, including our motivating 

firm, that use on-time delivery as a winning criterion. The development of the SaR risk measure is an 

outcome of our interactions with the motivating firm’s executives. 

Inventory is commonly used as a buffer against disruptions. In manufacturing networks, for example, 

inventory decisions are primarily driven by disruption risks. Buffer inventory is kept around the nodes 

that are more susceptible to disruptive events to sustain continuity of manufacturing operations that 

feature predecessor-successor relationships between nodes. Delivery networks, on the other hand, do not 

possess a predecessor-successor structure between nodes, making the placement of excess inventory 

across the network less intuitive. In a delivery network, excess inventory kept at a node increases the 

firm’s capability of serving as a backup to the other nodes in the event of a disruption. Our paper 

addresses two important decisions regarding inventories: Where and how much inventory should be kept 

in a delivery network so that the firm can keep its goal of delivering goods in a timely manner.  

Our study combines proactive and reactive risk mitigation strategies to counter disruption risks in 

delivery operations and continue to serve the firm’s contracted customers. Prior to the disruption, the firm 

considers building a sufficient level of inventory at each fulfillment center (FC) as a precautionary and 

proactive risk mitigation technique. The stocking quantity decisions resemble building capability to be 

able to fulfill orders at the time of a disruption at other facilities. If there is no additional inventory at a 

nearby FC, then diverting delivery decisions to that facility would not be beneficial. Thus, stocking 

quantity decisions at each FC constitute the proactive risk mitigation approach. The reactive perspective 

of our study determines the best way to deliver customer orders from the operational FCs and other 

vendors in the event of a disruption at an FC, while complying with its SaR constraint. Specifically, the 

firm solves a transportation problem under disruption length and demand uncertainty with the goal of 

minimizing the total transportation cost while complying with the SaR constraint. Thus, the firm’s 

optimal shipment decisions represent a reactive risk mitigation approach in dealing with the disruption 

risk; shipments from operational FCs are only viable when there are excess inventories.  
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When the firm does not have sufficient inventory in nearby FCs, the orders can be filled by vendors. 

However, the shipments from vendors are almost always late, impairing the firm’s delivery performance 

and winning criterion. Thus, vendor shipments decrease the chances of satisfying the SaR constraint.  

We formulate the problem using a two-stage stochastic program. The firm determines the optimal 

levels of inventory in each FC in stage 1. After observing the disruption, corresponding to stage 2 of our 

model, the firm determines how to best satisfy the orders arriving at the disrupted FC. In stage 2, our 

model considers the length of disruption as random and that the firm complies with a SaR constraint that 

limits the probability of the number of late deliveries exceeding a threshold by a tolerable probability. 

Initially, our model ignores demand uncertainty in order to isolate the influence of disruption risks.1 The 

structural properties developed under deterministic demand serves as a building block to the analysis with 

demand uncertainty. Demand uncertainty is incorporated into the model in Section 5.5 where we consider 

two different time epochs for its realization. We adjust the SaR constraint and the model accordingly and 

show that our main results continue to hold under demand uncertainty.  

The analysis integrates a comprehensive set of potential disruptions including broad-impact events 

which can affect multiple facilities, and narrow-impact events affecting a single facility. The data for 

these disruptions are provided by the firm (a string of eight years’ information) and collected from 

national sources.  

This paper makes four main contributions. First, our study shows that the total amount of excess 

inventory committed as a result of disruption risk is not necessarily increasing with risk aversion; rather, 

the total excess stock can be decreasing with risk aversion. This is an unexpected result. One would intuit 

that the total inventory level should be nondecreasing, and even further monotonically increasing in risk 

aversion because excess inventory increases the capability of the firm in making on-time deliveries and 

the chances of satisfying the SaR constraint. However, our analysis describes several conditions under 

which the total inventory level can decrease in a delivery network at higher degrees of risk aversion. We 

show that this result primarily stems from the following two factors: (1) The SaR constraint causes a shift 

in the decision maker’s attention from more likely narrow-impact disruptions to less likely broad-impact 

disruptions; and (2) adding excess inventory at one FC reduces the marginal benefit of excess inventory 

kept at other FCs in a delivery network. Therefore, this result is a direct consequence of the application of 

our novel SaR approach to a delivery network. Our study also demonstrates this phenomenon numerically 

in our motivating firm’s network highlighting that the conditions needed for this result are sufficiently 

 
1 The setting with deterministic demand is consistent with the firm’s operating environment as well as the focus of 
its executives. The average coefficient of variation for random disruption length (from data) is 2.23 whereas the 
average coefficient of variation for random demand (combined from all FCs) is 0.13. 
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general and practically applicable. Our numerical illustrations demonstrate that this finding leads to a 

minimum of 11% savings in inventory at the firm motivating our study.  

Second, we introduce a new metric called Risk Dispersion Index (RDI) that evaluates the dispersion 

in risk exposure across facilities in the network. RDI complements the Risk Exposure Index (REI) 

introduced in Simchi-Levi et al. (2014). The REI metric is originally developed for a manufacturing 

setting with the aim of identifying the individual risk level at each node in the presence of predecessor 

relationships. Our new RDI metric, on the other hand, focuses on the system-wide risk in a delivery 

network. It is based on the mean absolute deviation in REI scores in a given network infrastructure: 

RDI of a network = Σ |REI score at each FC – Average REI score| / [number of FCs]. 

Lower RDI scores imply that the network has a more balanced risk profile among its facilities and it is 

much less vulnerable to potential disruptions. Thus, RDI can be understood as extending the existing 

literature by introducing a dispersion perspective in supply chain network design under disruption risk. 

Our interactions with the firm executives reveal that companies would benefit by combining the REI 

scores for individual facilities with the RDI score for the entire system in designing resilient supply 

chains. Using RDI, we show that our proposed proactive and reactive risk mitigation strategies lead to 

more resilient supply chain operations with lower and balanced levels of risk exposure at the firm’s FC 

network. Our numerical analysis in Section 6 demonstrates that our model leads to substantial 

improvements in comparison to the firm’s current practice. Average risk exposure is decreased by 28.11% 

in the risk-neutral setting and by 23.44% in the risk-averse setting. Similarly, average dispersion in the 

risk exposure is decreased by 29.91% in the risk-neutral setting and by 25.52% in the risk-averse setting. 

The firm executives indicate that this is a substantial improvement in their risk mitigation efforts 

pertaining to disruptions in fulfillment center operations. 

Third, the study shows that an FC can abandon its customers in order to serve the customers of a 

disrupted facility. We describe the proportion of late deliveries as a function of transportation distance. 

This surprising result occurs when the lateness proportion increases in distance in a convex manner. In 

this scenario, the closest facility serves the customers of a disrupted FC rather than its own customers, 

those customers that are not served by their region’s operational facility are served by another nearby 

facility creating a chain of rerouting support. We coin this behavior as the abandonment policy and show 

that it becomes more prominent under risk aversion. 

Fourth, we show that incorporating demand uncertainty diminishes the marginal benefit of inventory 

and reduces a risk-neutral retailer’s initial inventory commitment. This finding is driven by the risks of 

overstocking and over-shipping stemming from the demand and supply mismatches. Despite the 

diminishing marginal benefit of inventory, our main contributions discussed above remain robust under 

demand uncertainty. 
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2.  Research Context 

This section provides information regarding our motivating firm, a Fortune 150 online retailer whose 

business customers constitute the largest share in its revenues. As a result, the firm operates a dedicated 

supply chain to serve its contracted business customers. Figure 1 shows that the firm has 15 fulfillment 

centers (FC) located in the US, and these facilities are responsible for delivering orders within the next 

business day. Specifically, orders placed before 5:00pm in regional time are intended to be delivered the 

next day before 5:00pm. The firm utilizes its delivery performance (within one day) as its winning 

criterion in competition with other retailers. Specifically, the firm promises to its contracted customers 

that the likelihood of its late deliveries exceeding a certain nationwide threshold will not be greater than 

an advertised probability. We coin the firm’s probability restriction as the “Service-at-Risk” (SaR) 

constraint.  

 

 

Figure 1: Illustration of the firm’s delivery supply chain. 
 

The firm is already relying on deliveries that can be made from other operational FCs in the event of 

disruptions. Data from an eight-year time interval reveals that the firm experiences an average of 252 

disruptions per year. The firm has a target for percentage of late deliveries stemming from disruptions; 

this value is set to 3.4%. However, the percentage of late deliveries increased to 5.06% in the most recent 

year from 3.92% a year before. As the firm was drifting away from the goal, executives felt a need to 

reverse the trend by being more proactive in order to mitigate the disruption risk.  

The data shows that the disruption costs come in three areas: Additional transportation cost due to 

filling the demand (of non-operational FCs) through operational FCs is 9.01%; the penalty cost from late 
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deliveries is 30.35%; and the vendor shipments (which are always late and incur the penalty cost) is 

60.64% of the total cost from disruptions. These numbers exemplify that there was not sufficient extra 

inventory in the system to minimize the late deliveries and reduce the associated penalties. Thus, the firm 

needs help in determining the adequate level of extra inventories in each location.  

Figure 2 provides the heat map for a comprehensive set of disruptions at the motivating firm (details 

of this data are provided in Section 6). Using data provided by the firm (a string of eight years’ 

information) and data collected from national sources, we classify disruptions as narrow-impact and 

broad-impact events. Bomb threat, break-in, fire, flood, gas leak, tornado, power outage, and weather are 

classified as narrow-impact disruptions. Earthquake, hurricane, and chemical and nuclear plant failures 

are broad-impact disruptions that can potentially affect multiple facilities. 

 

 

Figure 2: Heat map for disruptions on a scale of 1-5 where 1 represents the lowest and 5 represents the 
highest likelihood/impact duration. Node color denotes the impact range as narrow or broad impact. 

 

3.  Literature Review 

There are three streams of literature related to our work. The first stream is the operational mitigation 

literature that examines proactive risk mitigation strategies a firm can take prior to a disruption. The 

second stream is the operational contingency literature that focuses on how a firm should react amid a 

disruption to minimize loss. The third stream is the literature pertaining to quantification of the disruption 

risk in a supply chain.  

There is a growing literature that examines inventory decisions in FCs of online retailers (Chen and 

Graves 2014, Acimovic and Graves 2015). However, these publications ignore disruption risks. Our study 

employs a proactive inventory planning approach at fulfillment centers in the presence of disruption risk. 

In our study, proactive risk mitigation decisions are coupled with reactive contingency transportation 
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planning decisions. We also develop a metric to measure the risk exposure across a supply chain. Because 

our work emphasizes disruption risk, we next present how our study contributes to the most closely-

related three streams of literature.  

Operational Mitigation Literature: This stream primarily examines disruption risks in the context of 

sourcing flexibility. These studies determine how many and which suppliers to utilize as a proactive 

measure, and how to split orders among backup suppliers when a supplier becomes unavailable due to a 

disruption as a reactive measure. Anunpindi and Akella (1993), Swaminathan and Shanthikumar (1999), 

Tomlin (2006), Chopra et al. (2007), Tomlin (2009), and Yang et al. (2012) investigate dual sourcing 

settings, while Berger et al. (2004), Berger and Zeng (2006), Ruiz-Torres and Mahmoodi (2007), Dada et 

al. (2007), Federgruen and Yang (2008, 2011), Hu and Kostamis (2014), and Zhao and Freeman (2019) 

analyze the multi-supplier models. Ang et al. (2017) and Bimpikis et al. (2019) extend these analyses to a 

multi-tier supply network. Tang et al. (2014) incorporate endogenous supplier reliability into their 

problem setting.  

Our study contributes to this literature in three dimensions. First, we emphasize the inventory quantity 

decision at each facility as a proactive measure. This is different from incorporating external suppliers 

into a network of facilities from a modeling perspective. When the inventory commitments are 

determined within the firm’s network facilities, our model accounts for a combination of distances 

between facilities, lateness in deliveries and shipments from vendors (external suppliers). Second, our 

study introduces a novel operational risk measure: Service-at-risk (SaR) constraint. This operational risk 

measure is critical to the success of the firm motivating our study with its goal of maintaining high 

service levels and timeliness in delivery operations. Thus, SaR is another distinct feature of our model 

that differentiates our study from earlier publications. Third, our setting incorporates the possibility of 

broad-impact disruptions that can affect multiple facilities together (as opposed earlier publications, 

which often feature only narrow-impact disruptions). Berger et al. (2004) and Ruiz-Torres and Mahmoodi 

(2007) also consider the possibility of multiple facilities getting disrupted. However, their study employs 

a decision-tree approach in order to choose the optimal number of suppliers. Our paper differs from these 

two publications because it emphasizes proactive inventory decisions and it introduces the novel SaR 

measure in developing risk mitigation strategies.  

Operational Contingency Literature: While our paper investigates a delivery network, operational 

contingency has been widely examined in manufacturing settings. Meyer et al. (1979) is the first to 

consider using inventory to mitigate disruption risk in a single-stage production-storage system. Earlier 

publications focus on the optimal inventory replenishment policies and Snyder et al. (2016) provides a 

comprehensive review of this literature. Parlar and Berkin (1991), Berk and Arreola-Risa (1994), Ross et 

al. (2008) and Qi et al. (2009) examine the single-stage continuous-review policies amid disruption risks. 
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Parler et al. (1995), Song and Zipkin (1996), Li et al. (2004) and Schmitt et al. (2010) extend these 

findings to the single-stage periodic-review policies. DeCroix (2013) examines the period-review policy 

in a multi-period, multi-echelon setting to find the optimal base-stock policy. Yang et al. (2009) 

investigate the role of backup production. 

Mitigating disruption risks with inventory in delivery operations differs from that in a manufacturing 

setting. In manufacturing, suppliers and manufacturers have predecessor relationships. Earlier literature 

considers this dependency on each other. Inventory is accumulated in a manufacturing facility in order to 

sustain its own production activity if a supplier is disrupted. In delivery operations, however, FCs are 

independent entities with their own customers to serve and are stocked with mostly identical goods. 

Therefore, in our setting, additional inventory is kept at surrounding facilities in order to sustain 

operations at a disrupted facility. Thus, nodes in a delivery network create a complementary backup 

capability rather than dependency. As a result, the analytical models developed for manufacturing and 

delivery operations are notably different. 

Given the differences in manufacturing and delivery operations, our study contributes to the 

operational contingency literature with new results in proactive and reactive measures. While earlier 

publications advocate for a higher level of inventory in order to sustain continuity in successor operations, 

our study is the first to show that the total inventory commitment can be decreasing under risk aversion. 

Our study also contributes with new reactive measures: We show that it might be beneficial for an FC to 

abandon serving its own customers in order to serve the customers of the disrupted facility.  

Literature that quantifies risk exposure: The last contribution of our paper to the literature is that we 

introduce a new metric called the Risk Dispersion Index (RDI) that measures the dispersion in risk 

exposure across a supply chain. RDI complements the Risk Exposure Index (REI) developed by Simchi-

Levi et al. (2014), which identifies vulnerability at each node of an automobile assembly network. The 

REI metric starts from calculating the time to recovery (TTR) for each node, which then translates to 

estimated losses during the recovery period. Managers can easily identify the high-risk nodes using the 

REI metric. However, the REI metric itself does not reveal any information about the system-wide risk in 

the supply chain, which motivates the need to develop a new metric while preserving the REI framework. 

Simchi-Levi et al. (2015) further develop the analysis of Simchi-Levi et al. (2014) by introducing the 

concept of time to survive (TTS) which is the maximum amount of time a node can fully function in the 

midst of a disruption. Gao et al. (2019) extend this study with a stochastic TTR and incorporate scenarios 

of random nodes being disrupted. While these publications focus on manufacturing and assembly 

operations, our study examines delivery operations for contracted customers with tight deadlines for 

fulfilling customer demand. In assembly settings, earlier publications conclude that risk can be mitigated 

by increasing the supply of parts at the potentially disrupted facility. Our study, on the other hand, 
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concludes that inventory should be kept in surrounding facilities (rather than the potentially disrupted 

facility) to enable delivery operations and continue to satisfy customer demand. In addition to differences 

in the proposed risk mitigation strategies, we introduce an operational risk measure called SaR which 

does not exist in earlier publications. Moreover, our study compares our operational risk measure SaR 

with the well-known financial risk measures VaR and CVaR. It shows how these measures are similar 

under certain conditions and differ in other conditions.  

Hendricks and Singhal (2003, 2005a, 2005b) show that disruptions have significant financial 

implications. Financial mitigation literature primarily considers insurance as a way to mitigate the 

financial consequences. Dong and Tomlin (2012) and Dong et al. (2018) demonstrate that financial 

mitigation in the form of insurance is beneficial in minimizing the total cost against disruptions in 

manufacturing settings. However, insurance has no positive impact on the performance of deliveries. 

Because the motivating firm’s winning criterion involves on-time delivery performance, our study 

focuses on operational mitigation and operational contingency, and it ignores financial mitigation in the 

form of insurance. Building more resilient supply chains by using metrics such as RDI and REI to 

identify and strengthen the vulnerable areas should reduce the cost of insurance. 

4.  The Model 

We formulate the firm’s delivery planning problem under disruption risk using a two-stage stochastic 

program. Table 1 summarizes the notation used in our model. In stage 1, the firm determines the amount 

of additional inventory at each FC in order to minimize the sum of two costs: The cost of stocking 

additional inventory and the expected cost from executing a contingency plan over the next time period 

(e.g., one year). The inventory decisions in stage 1 are made under disruption risk that would halt 

operations at FCs. Therefore, stage 1 decisions can be perceived as building the firm’s capability to 

service its customers in the event of a disruption. If one or more FCs are disrupted, the firm implements a 

contingency plan in stage 2 with the objective of minimizing the execution cost of the contingency plan. 

Specifically, when a disruption occurs, the firm determines how to distribute the available inventory in 

stage 2 limited by the decisions made in stage 1. 

Business customers of the firm are clustered in regions (in the form of a collection of zip codes) 

indexed as j = 1, 2, …, J. The daily customer demand in region j is denoted Dj. The firm motivating our 

problem serves primarily business customers whose demand is stable over time and the firm is confident 

in its ability to forecast the demand accurately. Including demand uncertainty does not alter our main 

findings, but the deterministic demand setting enables us to isolate the influence of disruption risk in 

delivery operations. The structural properties developed under deterministic demand serve as a building 

block to the analysis pertaining to the problem setting with demand uncertainty. In Section 5.5, we show 

that our main findings continue to hold under demand uncertainty.  
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We use subscript i = 1, …, J to describe FC i. When there is no disruption in the network, all 

customers in region j are served by a single FC i located in the same region, i.e., i = j. If a disruption 

occurs at the facility serving region j, the demand Dj is diverted to other operational FCs (i.e., i ≠ j) and 

vendors. We use index n = 1, …, N to describe the network of operating facilities where N = 2J – 1, 

representing all subsets of {1, …, J} excluding the network structure when all facilities are disrupted. For 

example, in a three FC network with three regions to serve, there is a total of 7 (= 23 – 1) different 

operating network combinations where n = 1 represents only FC 1 is operational, n = 2 represents only FC 

2 is operational, n = 3 represents only FC 3 is operational, n = 4 represents FCs 1 and 2 are operational, n 

= 5 represents FCs 1 and 3 are operational, n = 6 represents FCs 2 and 3 are operational and n = 7 

represents all three FCs are operational. In a given network n, we describe set of disrupted facilities with 

Λ(n). In the above three-facility network structure, Λ(n = 4) = {3} indicates that FC 3 is disrupted. 

 

Dj Daily customer demand in region j (j = 1, 2, …, J) 
Λ(n) Set of disrupted facilities in a given network n (n = 1, …, N) 
pmn Probability of a disruption event m causing a network n over the next period 

mn  Random time length of disruption in days 
Ki Amount of excess inventory at each FC i (i = 1, …, J) 

 1 K
  Objective function in stage 1 for vector K


= (K1, …, KJ)  

 *
2,mn K

  Expected cost from executing the optimal contingency plans in stage 2  
cK Unit cost of holding additional inventory over the next period (e.g., one year) 
cT Unit transportation cost 
cL Unit late delivery cost 
cV Unit vendor shipment cost 

mn
x


 Vector of daily shipment decisions xij
mn under disruption event m in network n 

dij Distance from FC i to region j 
l(dij) Proportion of late deliveries for a given dij 

α, β Parameters used in the Service-at-Risk constraint – total lateness exceeding the total 
tolerable lateness of β cannot be greater than the tolerated probability of 1 – α. 

Table 1: Summary of notation used in the model. 

 

Each disruption event (e.g., hurricane) is represented by index m = 1, …, M. The probability of a 

disruption event m causing a network n over the next period (e.g., one year) is described with pmn. Our 

representation of disruption event index m and network structure index n yields a total of M x N unique 

pairs of (m, n); this allows for complete generalization of our model. However, in practice, many (m, n) 

pairs would have a probability of zero, e.g., an earthquake disrupting an FC located in Minnesota where 

major earthquakes are not seen. This reduces the computational complexity significantly.  
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The time length of disruption is random and is expressed as mn  (e.g., in days). We make no 

assumptions regarding the distribution of mn other than having a non-negative support, thus, our 

conclusions remain valid for any type of probability distribution. 

In stage 1, the firm determines the amount of excess inventory at each FC i, denoted Ki, where i = 1, 

…, J. The vector K


= (K1, …, KJ) represents the additional inventory decisions in stage 1 that can be used 

to continue the delivery service in stage 2. Without loss of generality, we assume the present level of 

inventory at FC j to be equal to the region’s demand Dj; the case when each facility owns excess 

inventory in the beginning does not bring new insights. We relax this assumption in the numerical 

illustrations in Section 6. Unit cost of holding additional inventory over the next period (e.g., one year) is 

described with cK. The objective function in stage 1, denoted  1 K


, can be expressed as follows: 

   *
1 2,

0
1 1

min
M N

K i mn mn
i m n

c K p
  

    
K

K K 

 
              (1) 

The first term in (1) describes the total cost of adding inventory in FCs. The second term is the 

expected cost from executing the optimal contingency plans in stage 2 where  *
2, Kmn


 is the minimal 

cost for servicing the customers under disruption m in network n for the given set of stocking decisions K


 

made in stage 1. 

In stage 2, given a disruption m  {1,..., M} in network n  {1,..., N}, the firm determines the optimal 

amount of daily shipments to be made from operational FC i to region j denoted with xij
mn where j = 1, …, 

J and i  Λ(n). The vector x
mn

represents the vector of daily shipment decisions xij
mn under disruption 

event m in network n.  

In stage 2, the firm experiences three types of additional costs due to the contingency plans:  

Transportation: This cost includes the costs of transportation diverted to operational FCs. Unit 

transportation cost cT is multiplied by the distance from FC i to region j described by dij. Thus, each unit 

shipped from FC i to region j costs the firm cTdij. Our model examines the additional costs stemming from 

disruptions; therefore, we assume dii = 0 for i = 1, …, J, and dij > 0 for i  j can be perceived as the 

additional distance of travel when customers in region j are served from FC i.  

Late deliveries: The firm experiences late deliveries for some proportion of shipments made from FCs 

that are located in other regions. The lateness proportion is described with l(dij) (≤ 1), which is a function 

of the distance between the serving FC i and the customers in region j denoted with dij. The FC located in 

the same region with its customers is capable of delivering on time, therefore, we set l(dii = 0) = 0 for i = 

1, …, J. The proportion of late deliveries increases in the distance from FC i to customers in region j, i.e., 
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∂l(dij)/∂dij ≥ 0. Each unit of late delivery costs the firm cL, and therefore, cLl(dij) can be perceived as the 

realized unit cost of late deliveries for shipments from FC i to customers in region j.  

Vendor shipments: All unsatisfied demand from FCs are fulfilled through vendors. The firm pays the 

vendor for the shipment made from the vendor, denoted cV. All deliveries made from the vendor miss the 

firm’s promised 24-hour delivery window. Thus, the firm incurs a total cost of (cV + cL) for each unit of 

demand fulfilled from the vendors. Since the vendors are not expected to make these deliveries on time, 

without loss of generality, we assume that vendors have inventory to eventually fulfill these orders. 

The second-stage objective function minimizes the total expected cost stemming from transportation, 

late deliveries, and vendor shipments under an uncertain disruption duration: 

   
 

 
*
2, 2,

0
min

mn

mn mn
T ij ij L ij ij

mn j i j i mn
mn mn mn

V L j ij
j i

c d x c l d x

E
c c D x




 
 

             
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           (2) 

s.t. 

mn
ij i i

j

x K D   i                 (3) 

mn
ij j

i

x D  j                  (4) 

  1mn mn mn
ij ij j ij

j i j i

P l d x D x   
   

       
    

                (5) 

xij
mn = 0 i  Λ(n)                 (6) 

Constraint (3) represents the supply constraint for each FC i. Constraint (4) represents the demand 

constraint at each region j. Constraint (6) avoids shipments from the disrupted facilities in network n.  

Inequality (5) describes the Service-at-Risk (SaR) constraint. According to SaR, the firm complies 

with a chance constraint in which the probability of total lateness (during disruption m in network n) 

exceeding the total tolerable lateness of β cannot be greater than the tolerated probability of 1 – α. The 

total lateness in SaR is influenced by two factors in our model: First, a proportion of the shipments made 

from an operating FC i to region j, denoted l(dij), arrive late. Second, shipments made from the vendor 

miss the company’s promised 24-hour delivery window. 

It is important to distinguish our model with a SaR constraint from the traditional modeling 

approaches that employ Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) constraints. While 

VaR and CVaR constraints are designed to avoid monetary losses, our SaR constraint specifically focuses 

on the on-time delivery performance, and thus, it is an operational constraint. This unique focus of SaR 

becomes apparent when it is compared with the objective function (2) and other financial risk measures 

like Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) risk measures which represent monetary 
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values. From the objective function (2), one can see that a shipment arriving late from the vendor costs (cV 

+ cL) whereas a shipment arriving late from an operational FC i costs (cTdij + cL). Therefore, the financial 

implication of a late delivery differs depending on whether it is fulfilled from a vendor or an operational 

FC. The SaR constraint, on the other hand, treats all late deliveries the same way regardless of deliveries 

being made by the vendors or operational FCs, i.e., a late delivery is a late delivery no matter where the 

shipment comes from. Our SaR constraint is a novel representation of delivery performance in the 

presence of disruptions. This is a critical operational measure for firms, including our motivating firm, 

that use on-time delivery as a winning criterion. Because SaR constraint is an operational requirement, it 

is incorporated into the second-stage formulation guaranteeing performance at every disruption in each 

network configuration. Inserting a similar constraint in the first-stage formulation is redundant because 

the second-stage model guarantees that a first-stage SaR constraint would be satisfied. Without the SaR 

constraint in the second-stage of the model, the first-stage formulation can lead to potentially infeasible 

solutions; our modeling approach eliminates this possibility.  

5.  Analysis 

The model in (1)–(6) is complex and its dimensions increase tremendously with a larger network, making 

it difficult to obtain critical results that illuminate managerially insightful findings. We begin our analysis 

with the risk-neutral setting in Section 5.1 where we ignore the impact of SaR. Incorporating the SaR 

constraint (5) later in sections 5.2 and 5.3 enables us to highlight the impact of risk aversion. In Section 

5.4, we compare our operational risk measure SaR with the traditional financial risk measures VaR and 

CVaR. In Section 5.5, we incorporate demand uncertainty into our analysis. 

5.1. Risk Neutral Analysis 

The risk-neutral version of the second-stage problem, with the objective function (2) subject to constraints 

(3), (4) and (6), is linear in its decision variables. Thus, combined with vendors having unlimited supply, 

there exists a set of optimal xij
mn decisions in stage 2 for each disruption event m in network n. We next 

examine the properties of these optimal contingency decisions. 

The lateness function l(dij) influences the optimal second-stage decisions. When lateness increases 

linearly in distance, i.e., ∂2l(dij)/∂dij
2 = 0, each FC always prioritizes serving its own customers before 

sending supplies to the customers of disrupted regions.  

Proposition 1 (Loyal Policy). When ∂2l(dij)/∂dij
2 = 0, the optimal amount of shipment is xii

mn* = Di for 

each FC i  Λ(n). 

We refer to the solution proposed in Proposition 1 as the Loyal Policy (Policy L) of distribution 

activities. If the excess inventory in FCs that are in the vicinity is insufficient to fulfill the demand in 

region j, then the vendor must be utilized. The next proposition establishes a threshold distance, denoted 

dH, that identifies the potential backup FCs for each region. 
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Proposition 2 (Backup shipment threshold). Suppose ∂2l(dij)/∂dij
2 = 0 and FC j is disrupted, i.e., j  Λ(n). 

(a) xij
mn* = 0 for each FC i  Γ(j) where Γ(j) includes every FC i such that dij ≤ dH where there exists a 

unique dH which solves cTdH + cLl(dH) = cV + cL. 

(b) Region j receives vendor shipments if 
   ,

j i
i n i j

D K
 

  . 

The set Γ(j) defined in Proposition 2(a) describes the set of backup FCs that can serve the customers 

of region j; the shipment amount from an FC outside of Γ(j) is equal to zero. Proposition 2(b) states that, 

if the total excess inventory at the operational backup FCs for region j is not sufficient to cover the 

region’s entire demand, then region j receives vendor shipments. 

Proposition 2 establishes a backup shipment threshold dH in the presence of a lateness function that 

increases linearly in distance. However, when lateness follows a convex increasing behavior in distance, 

then the optimal second-stage decisions feature a different behavior. In this case, an operational FC can 

abandon its own customers in order to serve the customers in the disrupted region. We next elaborate on 

this distribution behavior.  

To clearly demonstrate the two different types of response mechanisms under a disruption, it is 

sufficient to create a triangular scenario (J = 3). Suppose FC 1 is disrupted (1  Λ(n)), FCs 2 and 3 are 

operational ({2, 3}  Λ(n)), and moreover, the distance between FC 3 and FC 1 is the longest among the 

three FCs, i.e., {d21, d32} < d31. We also utilize the triangular inequality where the total distance of 

traveling through an intermediate FC is always longer than traveling directly. This implies that the sum of 

distances travelled from FC 3 to FC 2 and from FC 2 to FC 1 is greater than the distance travelled directly 

from FC 3 to FC 1. Thus, 

d32 + d21 – d31 > 0.                 (7) 

Proposition 3 (Loyal vs. Abandonment Policy). Suppose FC 1 with demand D1 (> K2) is disrupted, i.e., 1 

 Λ(n), and FCs 2 and 3 are operational, i.e., {2, 3}  Λ(n) where {d21, d32} < d31 ≤ dH. We define the 

following condition 

cL[l(d31) – l(d32) – l(d21)] ≤ cT[d32 + d21 – d31].              (8) 

(a) (Loyal Policy): If (8) holds, operational FCs 2 and 3 prioritize serving their own customers and then 

use their excess inventory to directly serve the customers of FC 1, i.e., x22
mn* = D2, x21

mn* = K2, x33
mn* = 

D3, x31
mn* = min{D1 – K2, K3}, x32

mn* = 0, x23
mn* = 0. We denote these decisions by mn

Lx


. 

(b) (Abandonment Policy): If (8) does not hold, FC 2 prefers to abandon its customers in region 2 in 

order to serve the customers of FC 1 while FC 3 serves the customers that FC 2 abandons, i.e., x22
mn* 

= (D2 – K3)+, x21
mn* = min{D1, K2 + min{D2, K3}}, x33

mn* = D3, x31
mn* = min{(D1 – K2 – min{D2, K3})+, 

(K3 – D2)+}, x32
mn* = min{D2, K3}, x23

mn* = 0. We denote these decisions by mn
Ax


. 
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Proposition 3 shows that there are two characteristically different ways of utilizing inventory in the 

event of a disruption; validity of (8) determines which policy is optimal. The right-hand side of (8), which 

is always positive, represents the additional transportation cost due to the longer total distance traveled in 

Abandonment Policy (from FC 3 to FC 2 and from FC 2 to FC 1) compared to Loyal Policy (from FC 3 

to FC 1). Left-hand side of (8) can fetch a positive or a negative value depending on the lateness function 

l(dij). A positive (negative) value for the left-hand side of (8) indicates that Abandonment Policy reduces 

(increases) the proportion of late deliveries, and hence, the late delivery cost compared to Loyal Policy. A 

lateness function increasing in distance in a linear manner always yields a negative value for the left-hand 

side of (8). In that case, the optimal policy is the Loyal Policy as presented in Proposition 3(a). 

Conversely, a convex lateness function (i.e., ∂2l(dij)/∂dij
2 > 0) can lead to a positive value for the left-hand 

side of (8) depending on its degree of convexity. If the lateness function is sufficiently convex, then the 

left-hand side of (8) becomes greater than the right-hand side, i.e., (8) does not hold. In this case, the 

Abandonment Policy as shown in Proposition 3(b) is optimal where there exists an operational FC i with 

xii
mn* < Di that is i = 2. In Abandonment Policy, FC 2 abandons its own customers and prioritizes serving 

the customers of the disrupted facility FC 1. In turn, the customers of FC 2 are served by the other 

operational FC 3. This type of chain rerouting becomes practical when utilizing a long transportation link, 

which leads to significantly higher proportions of late deliveries as compared to utilizing two shorter links 

due to the convexity in lateness function.  

Let us briefly elaborate on the first-stage decisions under risk neutrality. The first-order derivative of 

(1) with respect to Ki can be represented as 

∂  1 K


/∂Ki = cK +  
1 1

M N
mn

mn i
m n

p 
 
 K


               (9) 

where  mn
i K


 is the dual price of the supply constraint (3) for FC i evaluated at K


 under a given (m, n). 

The value of  mn
i K


 is a non-decreasing step function in K


 and is non-positive.  mn
i K


 represents the 

marginal benefit of additional inventory for a given (m, n).  

∂  1 K


/∂Ki fetches its maximum value of cK (> 0) at high values of Ki for each i since  mn
i K


 is 

non-decreasing. This ensures that the minimization problem in stage 1 is bounded and there exists an 

optimal solution. Proposition 4 formalizes this result. 

Proposition 4 (Optimality in stage 1). The risk-neutral problem described with (1), (2), (3), (4) and (6) is 

bounded and there always exists an optimal solution. 

Now that we established the results for a risk neutral firm, we next examine the role of risk aversion 

through SaR as described in expression (5). 
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5.2. Risk Aversion 

In the event of a disruption, Proportion 3 establishes the conditions for the Loyal Policy (Policy L) and 

the Abandonment Policy (Policy A). How are these two policies impacted by the inclusion of risk 

aversion? Our analysis in this section incorporates the SaR constraint in (5) where the firm is required to 

satisfy the probability of late deliveries exceeding a threshold  to be less than the tolerated probability of 

1 – . Note that, for each  probability, there exists a range of  values that satisfy the SaR constraint (5). 

The next proposition shows that risk aversion increases the likelihood of following the Abandonment 

Policy in stage 2.  

Proposition 5 (Risk aversion in stage 2). For a given first-stage decision vector K


, 

(a) If l(d31) ≤ (>) l(d32) + l(d21), then Policy L (Policy A) provides a superior compliance with the SaR 

constraint in (5), i.e., the left-hand side of (5), when mn mn
Lx x

 
 is smaller (greater) than that when 

mn mn
Ax x

 
;  

(b) If Policy A is optimal in the risk-neutral setting, then it is also optimal in the risk-averse setting; 

(c) If Policy L is optimal in the risk-averse setting, then it is also optimal in the risk-neutral setting;  

(d) The probability that Policy A is optimal in the risk-averse setting is greater than that in the risk-

neutral setting, i.e.,  

P[Policy A is optimal] in the risk-averse setting > P[Policy A is optimal] in the risk-neutral setting. 

The above proposition highlights the fact that risk aversion, as incorporated through the SaR 

constraint, encourages the deployment of Policy A more than it would in the risk-neutral setting. Recall 

that Proposition 3 established the fact that Policy A can only occur in a risk-neutral setting when (8) does 

not hold. Propositions 5(a) and 5(d), however, show that Policy A can be optimal under risk aversion, as 

long as l(d31) > l(d32) + l(d21) holds, even when (8) holds (see online supplement for details). Thus, one 

way to mitigate the risk of late deliveries is altering the delivery patterns with Policy A for given 

inventory levels. 

Now that we established preferences in the second stage under risk aversion, we can now turn our 

attention to the first-stage analysis. 

5.3. Impact of Risk Aversion on Optimal Stocking Decisions 

Earlier studies examining the inventory decisions showed that incorporating risk aversion (under 

exogenous prices) leads to a higher quantity investment (see Eeckhoudt et al. 1995). This section presents 

a surprising finding that the stocking investment in stage 1 may decrease with the introduction of risk 

aversion through our SaR constraint. This is an unexpected result because excess inventory can increase 

the capability of the firm in making on-time deliveries, and specifically, it increases the chances of 

satisfying the SaR constraint in (5). Therefore, one would intuit that the stocking investment should be 
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nondecreasing (and even further monotonically increasing) in risk aversion. However, our analysis shows 

that, under several conditions, the excess stocking decisions can go down at higher degrees of risk 

aversion. We later demonstrate that this finding can occur in practice through our numerical analysis 

presented in Section 6. 

A scenario of three FCs (J = 3) is sufficient to highlight the driving factors of this surprising result 

regarding how excess inventory can have a decreasing behavior in risk aversion. Suppose FC 1 and FC 2 

are two nearby facilities and there is a third facility FC 3 which is located away from FCs 1 and 2, i.e., d12 

< {d13, d23}. For simplicity, we consider two kinds of disruptions. A narrow-impact disruption with a low 

range (m = L) can influence each facility individually leading to three different operating network 

structures where n = 1 represents FC 1 is disrupted, n = 2 represents FC 2 is disrupted and n = 3 

represents FC 3 is disrupted. A broad-impact disruption with a high range (m = H) can halt the operations 

of the two nearby facilities FC 1 and FC 2 together; this network is represented by n = 4. Because FC 3 is 

located distant from FC 1 and FC 2, the broad-impact event would not halt operations at FC 3. 

Consider the case when the optimal risk neutral solution, denoted (K1
N, K2

N, K3
N), is such that 

(C1): K1
N > 0, K2

N > 0, K3
N = 0. 

From a risk neutral perspective, Condition (C1) entails that the firm is economically better off by carrying 

excess inventory only at the two nearby facilities, FC 1 and FC 2. This would allow these two facilities to 

serve as backup for each other. Furthermore, both FC 1 and FC 2 can serve FC 3 as a backup facility in 

the event that FC 3 is disrupted. Condition (C1) also entails that there is no excess inventory kept at FC 3, 

thus, FC 3 cannot make any shipment to FC 1 or FC 2 in case either one of them or both are disrupted. 

SaR constraint in (5) implies that the probability of the total of late deliveries exceeding a certain 

threshold (indicated by ) cannot be greater than the tolerable probability of 1 – . In the probability 

distribution of the random disruption length, this corresponds to the right tale of the random variable mn  

at –percentile, denoted mn. Thus, the firm is concerned with late deliveries accumulating when the 

random disruption length exceeds the value of mn. We define the following condition:  

(C2): (D1 + D2)ταH4 =  + ε >  ≥ {D1ταL1, D2ταL2, D3ταL3}      (10) 

where ε is a small positive infinitesimal quantity representing the switch from risk-neutral setting to risk-

averse setting. Condition (C2) makes two statements. First, it guarantees that the SaR constraint (5) is 

never violated for (m, n)  {(L, 1), (L, 2), (L, 3)}, representing the narrow-impact disruptions. Second, it 

indicates that, when risk aversion is incorporated into the decision making process, the risk-neutral 

solution defined in Condition (C1) marginally violates the SaR constraint (5) for (m, n) = (H, 4), 

representing the broad-impact disruption halting operations at both FC 1 and FC 2. In this case, the only 

viable action to satisfy (5) for (m, n) = (H, 4) is to increase inventory at the distant facility FC 3. 
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How does then the total stocking quantity in stage 1 decrease with risk aversion? One might intuit that 

the inventory increase in FC 3 would lead to an increase in the total stock in the network. However, the 

increase in the inventory of FC 3 can trigger a decrease in the inventories of FC 1 and FC 2 when the 

following condition holds:  

(C3): |pL2θ1
L2(K1

N, K2
N, K3

A) + pL3θ1
L3(K1

N, K2
N, K3

A)| ≤ cK, 

|pL1θ2
L1(K1

N, K2
N, K3

A) + pL3θ2
L3(K1

N, K2
N, K3

A)| ≤ cK  

where K3
A denotes the stocking decision in FC 3 satisfying (5) for (m, n) = (H, 4). Condition (C3) states 

that, when the inventory in FC 3 is increased to K3
A, the first-order derivatives of stocking decisions at FC 

1 and FC 2 evaluated at their risk-neutral values (K1 = K1
N and K2 = K2

N) become positive. This represents 

that the marginal benefits of the last unit of inventory added at FC 1 and FC 2 do not justify the cost of 

carrying them. Therefore, the firm is better off by decreasing the inventories in FC 1 and in FC 2 by K3
A 

each compared to the risk-neutral values given in Condition (C1). It is worth mentioning that, without 

Condition (C3), the firm would be able to comply with the SaR constraint by increasing inventory at FC 3 

without decreasing the excess inventories at FC 1 and FC 2. The following proposition formalizes this 

finding that total inventory in the network can decrease when risk aversion is introduced. Note that this 

finding does not depend on the type of lateness function. 

Proposition 6 (Decreasing quantity in risk aversion). Suppose l(min{d31, d32}) < 1. Let (C1), (C2), (C3) 

hold and ε be a positive infinitesimal quantity. The risk averse solution becomes (K1
*, K2

*, K3
*) = (K1

N – 

K3
A, K2

N – K3
A, K3

A), where K3
A = ε/[(1 – l(min{d31, d32}))ταH4], representing the solution where the total 

risk averse inventory decision is smaller than the total risk neutral inventory decision. 

We next provide examples for each condition to better illustrate when this counterintuitive result in 

Proposition 6 can be observed in practice. Condition (C1) would hold if the likelihood of a broad-impact 

disruption impacting two nearby FCs is low enough (a small value of pH4) such that the firm does not find 

it economic to carry excess inventory at a distant FC in the risk-neutral setting. This condition indicates 

that, in the absence of a serious risk of broad-impact disruptions (e.g., hurricane), the excess inventory 

decisions are made primarily to respond to narrow-impact disruptions (e.g., fire). Thus, nearby FCs can 

serve as each other’s sole backup due to their proximity, which is a common practice observed at many 

firms including our motivating company. 

Condition (C2) would hold if the (random) total demand at FC 1 and FC 2 represents a high volume 

because of a broad-impact disruption lasting quite long has a significant probability (i.e., a large value of 

ταH4). This condition conceptualizes the shift in the firm’s planning perspective when the SaR constraint is 

introduced. The SaR constraint enforces the firm to be more cautious for broad-impact disruptions that 

affect multiple facilities because they can lead to a greater number of late deliveries. As a result of the 

SaR constraint, the firm puts more emphasis on potentially catastrophic disruptions in determining the 
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excess inventory quantities. This reaction is in line with risk-averse behavior in practice. For example, 

from our conversations with the executives at our motivating firm, we have learned that they are 

concerned about the possibility of hurricanes taking down multiple facilities located in the Southern US. 

As a result, they have indicated that risks pertaining to such broad-impact events should not be neglected 

in developing risk mitigation efforts even though the likelihood of those events are not high. Condition 

(C2) simply represents a case in which the risk-neutral inventory decisions prioritizing narrow-impact 

disruptions are not feasible when the SaR constraint is incorporated into the problem. This condition is 

adjusted slightly when we introduce demand uncertainty into the model in Section 5.5, but the 

interpretation remains the same.  

Condition (C3) stems from the nature of delivery networks. When excess inventory is added to one 

FC, it causes a decrease in the marginal benefit of excess inventory kept at other FCs in the network. 

Excess inventory at one FC acts as a substitute for inventories at other FCs. In our case, inventory is 

added to FC 3 due to the SaR constraint in order to be used in the event of a broad-impact disruption. 

However, that inventory can also be used in the event of a narrow-impact disruption occurring at either 

FC 1 or FC 2. As a result, when inventory is added in FC 3, the marginal benefit of excess inventory at 

FC 1 and FC 2 decreases. Condition (C3) simply represents a case when the reduced marginal benefits of 

excess inventory at FC 1 and FC 2 do not justify the unit cost of adding inventory cK. It is easy to see that 

this condition is satisfied when the unit cost of inventory cK is sufficiently large. 

In conclusion, Proposition 6 shows that risk aversion can result in a reduction in the systemwide 

inventory compared with the risk-neural setting. The conditions needed for this result are sufficiently 

general and practically applicable as discussed above. Our numerical analysis in Section 6 demonstrates 

this phenomenon in the network of our motivating firm, which has 15 facilities. Thus, this finding is not 

specific to a three-facility network and exists in larger network infrastructures with more than three 

facilities. 

5.4. Service-at-Risk vs. Value-at-Risk and Conditional Value-at-Risk 

In this section, we examine the relationships between the operational risk measure SaR with the 

traditional financial risk measures value-at-risk (VaR) and conditional value-at-risk (CVaR). VaR is a risk 

measure prescribed by Basel II and III accords and is widely employed by financial institutions. CVaR, 

on the other hand, is a coherent risk measure and is the preferred approach by academics because of its 

tractability. How is SaR related with these two financial risk measures? Are the delivery optimization 

solutions developed under a SaR perspective feasible and admissible under the financial risk measures 

VaR and CVaR? We begin our discussion by comparing SaR with VaR. 
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5.4.1. SaR vs. VaR 

It is established in earlier derivations that when an optimal risk-neutral solution is not feasible in a risk-

averse setting, increasing excess inventory enables the firm to comply with the SaR constraint in (5). In 

order to provide a fair comparison of the firm’s operational risk measure SaR with the financial risk 

measure VaR, let us retain the same risk tolerance probability (1 – α). Defining V as the amount of loss 

tolerated under VaR, the corresponding VaR constraint can be written as:  

    1mn mn mn
L ij ij L V j ij V

j i j i

P c l d x c c D x   
   

        
    

    .         (11) 

In (11), the probability expression has two cost terms. The first term   mn
L ij ij

j i

c l d x  is the cost 

stemming from internal late deliveries. The second term   mn
L V j ij

j i

c c D x
 

  
 

   is the cost stemming 

from vendor shipments (which are always late). These two cost terms are multiplied by the random 

disruption length mn which leads to the total cost associated with a disruption event. The VaR constraint 

described in (11) ensures that the probability that the total cost from lateness and vendor deliveries 

exceeding the tolerable loss of V does not exceed the tolerated probability of (1 – α). For a given set of 

xij
mn values, let V

= be the value that makes the VaR constraint in (11) satisfied at equality, i.e.,  

    1mn mn mn
L ij ij L V j ij V

j i j i

P c l d x c c D x   
   

        
    

    .         (12) 

The next proposition shows the conditions under which a delivery solution that satisfies the VaR 

constraint in (11) violates and satisfies the SaR constraint in (5). 

Proposition 7. For a given (1 – α), consider a set of xij
mn values that satisfy the VaR constraint in (11).  

(a) If  ≤ (V
= /(cL + cV)), then the SaR constraint in (5) is not satisfied by the same set of xij

mn values; and, 

(b) if  ≥ (V
= /cL), then the SaR constraint in (5) is also satisfied by the same set of xij

mn values. 

Proposition 7 shows that a solution that satisfies the financial risk measure VaR does not always 

satisfy the operational risk measure SaR. It establishes the relationship between the firm’s tolerance for 

lateness described by the value of  in the SaR constraint with the VaR constraint’s tolerated monetary 

loss described with V. At the value of V
= that makes the VaR constraint satisfied at equality, Proposition 

7(a) shows that when the firm’s tolerance for late deliveries is small, i.e., when  < (V
= /(cL + cV))), the 

same set of delivery decisions described by xij
mn values that satisfy the VaR constraint in (11) lead to the 

violation of the SaR constraint in (5). However, when the firm’s tolerance for late deliveries is large as 

described with  ≥ (V
=/cL), then the same set of delivery decisions described by xij

mn values also satisfy 

the SaR constraint in (5). When tolerance for late deliveries is in intermediate values,  i.e., (V
= /(cL + cV))) 
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<  < (V
=/cL), the SaR constraint in (5) may or may not be satisfied. In sum, the implication of 

Proposition 7(a) is the following: Even if the firm can limit the monetary loss by following the VaR risk 

measure, the high service level could be compromised and could lead to losses. 

We next show that satisfying the firm’s operational risk measure SaR does not always satisfy the 

financial risk measure VaR. For a given set of xij
mn values, let  = be the value that makes the SaR 

constraint in (5) in equality, i.e.,  

  1mn mn mn
ij ij j ij

j i j i

P l d x D x   
   

       
    

    .          (13) 

The following corollary establishes the conditions in which a solution that satisfies the VaR constraint in 

(11) can violate the firm’s tolerated lateness and the SaR constraint in (5).  

Corollary 1. For a given (1 – α), consider a set of xij
mn values that satisfy the SaR constraint in (5) at 

equality.  

(a) If V ≤ cL=, then the VaR constraint in (11) is not satisfied by the same set of xij
mn values; and,  

(b) if V ≥ (cL + cV)=, then the VaR constraint in (11) is also satisfied by the same set of xij
mn values. 

Corollary 1(a) establishes that, when the firm’s tolerated monetary loss described by V is small in 

comparison to the firm’s tolerated lateness, then the delivery solution proposed by the SaR risk measure 

does not satisfy the VaR constraint. As expected, Corollary 1(b) indicates that both risk measures are 

satisfied when the firm’s tolerated monetary loss is greater in value.  

While Corollary 1(a) indicates that SaR may not always guarantee compliance from the VaR 

perspective, it is important to highlight that it warrants financial compliance in a CVaR risk measure 

perspective. This is described next in the comparison of SaR with CVaR.  

5.4.2. SaR vs. CVaR 

The objective function in (2) accounts for all potential losses incurred by costly operations stemming 

from late deliveries and deliveries made by vendors. This objective function is a special form of CVaR in 

which the tolerated loss (let us denote it with C) and the tolerated loss probability  are both set to zero. 

When C = 0, both our objective function and CVaR account for all losses, whether they constitute a large 

or a small monetary loss. When the value of C is a large positive value, CVaR counts only large losses. 

From this perspective, our objective function can be perceived as a more stringent operational risk 

measure as it does not want the firm to have any losses, small or large. More importantly, a solution 

proposed by SaR complies with CVaR – it can even be the optimal solution for some CVaR measures. 

This is established in the following proposition.  
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Proposition 8.  

(a) The objective function in (2) is equivalent to minimizing CVaR with C = 0 and  = 0. Thus, any 

optimal delivery solution that complies with the SaR constraint in (5) is guaranteed to be optimal 

under this CVaR risk measure;  

(b) The optimal solution developed under the SaR constraint in (5) continues to be optimal under a CVaR 

risk measure for a non-negative tolerated loss amount of C  0 and with the tolerated loss 

probability of α = 0; and,  

(c) An optimal solution developed under the SaR constraint in (5) is always feasible under a CVaR risk 

measure with C  0 and α ≥ 0. 

The implication of Proposition 8 is that any solution developed under a SaR risk measure complies 

with the financial risk measure CVaR. However, the opposite is not true. A solution developed under a 

CVaR perspective may not always comply with the operational risk measure SaR. Proposition 8(a) shows 

that the optimal delivery solution developed under the SaR constraint is also optimal under a CVaR risk 

measure with C = 0 and  = 0 that accounts for all losses (big and small). As shown in Proposition 8(b), 

the same optimal delivery solution developed under the SaR risk measure is optimal under CVaR even if 

the firm’s tolerated loss is positive, i.e., C > 0 when α = 0. However, an optimal solution developed 

under SaR is not guaranteed to be the optimal solution under looser CVaR risk measures with C > 0 and 

α > 0, despite being feasible solutions. As mentioned earlier, however, an optimal solution under a CVaR 

risk measure with C > 0 and α > 0 is not guaranteed to be feasible under a SaR constraint. Thus, SaR 

guarantees operational feasibility with good financial solutions. These solutions can even be optimal 

financial solutions in risk-averse settings. Good financial solutions, however, do not guarantee feasible 

operational performance.  

Our comparison of the operational risk measure SaR with the financial risk measures VaR and CVaR 

leads to the following conclusions. Even if the firm develops a solution using a financial perspective 

through a VaR or a CVaR perspective, it does not guarantee delivery performance described by the SaR 

risk measure. Solutions developed under a SaR risk measure, on the other hand, guarantee good financial 

performance under VaR and CVaR measures and are always feasible under a CVaR risk measure. And 

finally, solutions developed under a SaR constraint provide good financial performance even under a VaR 

perspective when the tolerated amount of late deliveries is sufficiently large as depicted in Proposition 

7(b). These observations carry an important managerial implication: In the presence of disruption risks, a 

firm concerned about late deliveries might have to develop more geographically dispersed contingency 

strategies as compared to a firm concerned about its monetary losses. As a result, a firm using the SaR 

approach is likely to develop plans with greater reliance on the internal inventory within its own network. 
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Thus, we conclude that SaR can lead to lower operational costs stemming from late deliveries and 

deliveries made by vendors, leading to financially robust solutions.  

We have completed analyzing a complex model featuring disruption length uncertainty and 

nonlinearity caused by the SaR constraint. Using deterministic demand, we have been able to develop the 

structural properties of the two-stage stochastic program where the first-stage inventory decisions serve as 

the proactive risk mitigation preparedness and the second-stage distribution decisions as the reactive 

measures when a disruption occurs. In the next section, we introduce demand uncertainty into this already 

complex problem. The structural properties developed under deterministic demand setting serve as a 

building block in characterizing the optimal solution under demand uncertainty.  

5.5. Incorporating Demand Uncertainty 

We incorporate demand uncertainty into our analysis with two different model settings. Both model 

settings examine the first-stage decisions that are made under demand uncertainty. In the first setting, 

random demand is revealed before the firm determines optimal delivery decisions. It is important to 

highlight that our paper investigates a problem where shipments are made directly from operational FCs 

to the customers of the non-operational FCs – this is known as the last-mile delivery operations. Because 

the stage 2 model solves a last-mile delivery problem, the realization of demand uncertainty before 

delivery decisions is required for the firm to be able to generate purchase order numbers, shipping 

invoices, and charge its customers. As a result, the first model setting is a common representation of 

demand uncertainty in managing the last-mile delivery operations for many online retailers including the 

firm motivating our study. In the second model setting, we consider demand as uncertain at the time of 

determining delivery decisions. The idea in this setting can be viewed as a futuristic extension of 

Amazon’s anticipatory shipping (NPR, 2018), which normally pertains to the first-mile operations, to the 

last-mile deliveries. However, this setting requires the firm to possess the capabilities to create purchase 

order numbers, print labels, perform packaging, etc. in trucks while shipments are en route to the 

customer and before the firm sees the actual customer demand. We show that our main findings continue 

to hold under both the present and the futuristic settings of demand uncertainty.  

5.5.1. Demand Uncertainty Revealed Before Delivery Decisions 

We begin our discussion with the setting in which the firm makes shipment decisions to its customer after 

observing the customer orders. This corresponds to the setting where demand uncertainty is revealed 

before making delivery decisions. We show that (1) our main findings regarding risk mitigation strategies 

continue to hold under this demand uncertainty setting; and (2) demand uncertainty leads to a reduction in 

the risk-neutral firm’s proactive inventory commitment. The latter finding is caused by a reduction in the 

marginal benefit from the inventory commitment in stage 1. The marginal benefit from inventory 

decreases because of the probability of overstocking.  
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The sequence of events is as follows: In stage 1, the firm determines the optimal amount of inventory 

commitment in the presence of disruption and demand uncertainty. When disruption occurs, random 

demand is revealed at each FC. The firm then determines the optimal distribution and transportation 

decisions under a SaR constraint.  

Let jD  describe the random demand variable with an expected value of jD  at a disrupted FC j 

defined on a support [Dj
L, Dj

H] where Dj
H > Dj

L > 0. Let Dj
r represent the realization of the demand 

random variable.  

It is important to observe that the value of demand random variable is revealed at the beginning of 

stage 2. Therefore, the model that solves the stage 2 problem is identical to the expressions in (2)–(6) 

except that the values of Dj are replaced with the realized values of demand Dj
r at each region j in (2), (4) 

and (5). In addition, the right-hand side of the supply constraint (3) is replaced with i iK D  for each FC i 

where Ki represents the excess inventory. 

In the online supplement, Corollary A1 shows that our main finding where an FC can abandon its 

customers in order to serve the customers of a disrupted facility continues to hold under demand 

uncertainty. The result follows from the same condition expressed in (8). 

We next present an important distinction between the two settings with demand uncertainty and 

deterministic demand. For a given (m, n), 
 

i i
i n

K D


  represents the total amount of supply at the 

operational FCs. If the total realized demand r
j

j

D  is greater than 
 

i i
i n

K D


 , the dual price of the 

supply constraint (3) remains to have the same structure as in the deterministic demand case, i.e.,  mn
i K


 

is a non-decreasing, non-positive step function in K


. However, if r
j

j

D  is smaller than 
 

i i
i n

K D


 , 

then the dual price of the supply constraint (3) becomes zero for each FC i. Let  1
1
S K


 represent the 

first-stage objective function under this stochastic demand setting; its first-order derivative with respect to 

Ki becomes 

∂  1
1
S K


/∂Ki = cK +  
 1 1

1
M N

mn
mn i i i

m n i n

p G K D
  

   
          

 K


          (14) 

where G(.) is the cumulative distribution function of the random aggregate demand j
j

D  . We denote 

the dual price of the supply constraint (3) in this setting using  mn
i K


: 
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   
 

 1mn mn mn
i i i i i

i n

G K D  


  
         

K K K
  

 

due to the fact that 0 ≤ 1 – G(ꞏ) ≤ 1 and  mn
i K


 ≤ 0. Let *D
i

i

K describe the optimal amount of total 

inventory commitment in stage 1 under deterministic demand; similarly, let 1*S
i

i

K represent the optimal 

amount of total inventory commitment in stage 1 under random demand where its value is realized before 

shipments to the customer. The following proposition shows two important results. First, it proves that the 

marginal benefit from additional inventory under demand uncertainty is smaller than the marginal benefit 

under deterministic demand for each FC i, i.e.,    mn mn
i i K K
 

. As a result, demand uncertainty 

(when revealed before shipment decisions are made to the customer) leads to a reduction in the optimal 

total excess inventory in comparison to the deterministic demand setting.   

Proposition 9. (a) The marginal benefit of additional inventory under demand uncertainty revealed 

before delivery decisions is smaller than the marginal benefit of additional inventory under deterministic 

demand, i.e.,    mn mn
i i K K
 

. (b) Let j jD D  at each FC j for ceteris paribus. The optimal amount 

of total inventory commitment in stage 1 is smaller under the setting when demand uncertainty is revealed 

before delivery decisions than that under the deterministic demand setting, i.e., 1* *S D
i i

i i

K K  . 

Proposition 9(a) shows that the value from inventory preparedness decreases when demand is 

uncertain at the time of stocking decisions. When demand is deterministic, the firm plans with 100% 

confidence that every unit of excess inventory would be utilized in the event of a disruption. The marginal 

benefit from proactive inventory investment is lower under demand uncertainty because the firm faces the 

risk of overstocking expressed with the cdf term G(ꞏ). As a result, Proposition 9(b) proves that the firm 

prefers to carry a relatively less inventory under demand uncertainty in comparison with the deterministic 

demand setting. 

In the online supplement, Corollary A2 shows that our main result where the total inventory 

commitment can be decreasing under risk aversion continues to hold under demand uncertainty. 

Conditions (C2) and (C3) are replaced with the revised conditions (C2′) and (C3′) to accommodate 

stochastic demand. Comparing the optimality conditions presented in Proposition 6 and Corollary A2, our 

analysis shows that the firm needs a less restrictive condition under demand uncertainty. Thus, we 

conclude that incorporating demand uncertainty into the model makes our earlier findings more 

pronounced.  
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5.5.2. Demand Uncertainty Revealed After Delivery Decisions 

We next examine the setting where the firm makes shipment decisions before observing the customer 

demand. As a result, demand continues to be random in stage 2, requiring several adjustments in the 

model and its ensuing analysis. It is important to highlight that the realized demand can be smaller than 

the amount shipped by the firm, leading to waste in shipments and inventories. Thus, the SaR constraint 

described in (5) and the objective function expressed in (2) require revisions.  

We begin our discussion with the adjustments in the SaR constraint. Due to demand uncertainty, the 

total number of late shipments can be considered as random. To understand the total lateness in a 

disrupted facility FC j, we compare the random demand rate jD  with the proportion of shipments that are 

made on time. Recall that the firm’s shipments from all operational FCs to the region j is equal to mn
ij

i

x . 

Out of these shipments, a portion of them will be delivered late, i.e.,   mn
ij ij

i

l d x . The remaining portion 

of deliveries, equaling   1 mn
ij ij

i

l d x , will be made on time. Thus, the total number of late deliveries 

(per day) to region j is equal to   1 mn
j ij ij

i

D l d x


 
  

 
 ; this term includes all late deliveries stemming 

from the firm’s internal shipments as well as the vendor shipments. Then, the total number of late 

deliveries in all regions throughout a disruption with random length mn  becomes 

  1mn mn mn
j ij ij

j i

D l d x 


 
  

 
    . This results in the revised SaR constraint expressed below: 

  1 1mn mn mn
j ij ij

j i

P D l d x   
  

      
   

    .           (15) 

For notational simplicity, we define mn
j  to represent the random cumulative demand mn

jD    at FC j 

during a disruption with random length. We rewrite (15) and arrive at the revised SaR constraint: 

  1 1mn mn mn
j ij ij

j i

P l d x   
  

      
   

   .           (16) 

The adjustment in the second-stage objective function (2) is similar. The term 

  1mn mn mn
j ij ij

j i

l d x 


 
  

 
    represents the total number of late shipments inclusive of the late 

shipments from the firm’s own delivery operations and the shipments made by the vendor. The total 

lateness cost stemming from firm’s internal shipments and vendor shipments is expressed as 
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  1mn mn mn
L j ij ij

j i

c l d x 


 
  

 
   . In addition, the firm incurs mn mn mn

V j ij
j i

c x 


 
 

 
    for shipments 

originating from vendors. Thus, the second-stage objective function in (2) can then be written as follows:  

   
  

*
2, 2,

0

1
min

mn

mnmn mn mn mn
T ij ij L j ij ij

mn j i j i
mn mn

mn mn mn
V j ij

j i

c d x c l d x
E

c x

  

 






  
    

     
  

   
   

  

 
x

K x K 

    

 
. (17) 

Because demand is unknown even at the operational FCs at the time delivery decisions are 

determined, constraint (3) associated with the amount of supply that can get shipped also requires 

revision. Let us define the base stock in the operational FC i with BSi. The value of BSi isolates the firm’s 

inventory preparedness towards demand uncertainty; the value of Ki becomes strictly associated with 

inventory preparedness towards disruption uncertainty. We can then rewrite (3) as follows:  

mn
ij i i

j

x K BS   i.                 (18) 

Constraint (4) in the stage 2 model indicates that the shipment from operational FCs should not 

exceed the demand of the destination FC. This constraint is also revised so that the total shipment from 

operational FCs would not exceed the base stock of the destination FC:  

mn
ij j

i

x BS  j.                 (19) 

The stage 2 model for this setting becomes minimizing (17) subject to (16), (18) and (19) along with non-

negativity constraints in (6). We next show that the approach utilized to solve the problem under random 

disruption duration continues to be the prevailing approach to solve the problem under the combination of 

demand and disruption duration uncertainty. Thus, the main findings continue to hold when demand 

uncertainty revealed after delivery decisions is incorporated into the model. We supplement our earlier 

conclusions with two new results. First, the value of additional inventory commitment decreases when 

demand uncertainty is incorporated into the problem due to the risk of over-shipping. As a result, the firm 

commits to a smaller inventory under demand uncertainty. Second, our earlier finding where the 

introduction of SaR can lead to less inventory becomes more prevalent when demand uncertainty is 

incorporated into the model. This finding occurs with one less condition than the earlier model settings, 

making it easier to experience under demand uncertainty.  

Corollary A3 in the online supplement shows that Condition (8) continues to help determine when to 

employ Policy L vs. Policy A under demand uncertainty. Together with Corollary A1, Condition (8) 

determines the policy choice regardless of whether demand uncertainty is realized before or after delivery 

decisions. 
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We next elaborate on the first-stage solution approach. Let  2
1
S K


 represent the first-stage 

objective function under this stochastic demand setting; its first-order derivative with respect to Ki can be 

represented as 

∂  2
1
S K


/∂Ki = cK +  
1 1

M N
mn

mn i
m n

p 
 
 K


             (20) 

where  mn
i K


 is the dual price of the supply constraint (18) for FC i evaluated at K


 under (m, n). The 

value of  mn
i K


 is a continuous non-decreasing function in K


 and is non-positive.  mn
i K


 represents 

the marginal benefit of additional inventory for a given (m, n). 

∂  2
1
S K


/∂Ki fetches its maximum value of cK (> 0) at high values of Ki for each i since  mn
i K


 is 

non-decreasing. As a result, the minimization problem in stage 1 is bounded, leading to an optimal 

solution (see Corollary A4 in the online supplement). 

We next present an important feature of demand uncertainty on the value of inventory preparedness. 

Let us first compare the first-order derivative of (2) in the deterministic demand setting with that of (17) 

under demand uncertainty. The first-order derivative of (2) with respect to xij
mn is 

  1mn
T ij L ij VE c d c l d c          .              (21) 

The first-order derivative of (17) with respect to xij
mn is  

     1 1 1 1mn mn mn
T ij L ij j ij ij V j ij

i i

E c d c l d F l d x c F x
                              

          (22) 

where Fj(ꞏ) denotes the cumulative distribution function of random demand jD . One can see that the 

value of (21) is less than or equal to the value of (22) for all i, j, and (m, n). This indicates that making a 

shipment under deterministic demand is less costly than making a shipment under demand uncertainty. 

This stems from the fact that in the deterministic demand setting, the firm is 100% confident that every 

shipment made by the firm is utilized toward satisfying the readily known demand. Conversely, when the 

firm does not know the demand at the time of delivery decisions, it faces the risk of sending more 

shipments than the actual demand of customers. Moreover, this possibility of shipping more than the 

realized demand increases as the firm increases its shipment amount. As a result, from an expected cost 

minimization perspective, making a shipment when demand is known is more economical than making a 

shipment when demand is uncertain in stage 2. This structure pertaining to stage 2 also has immediate 

implications for the firm’s inventory decisions in stage 1. Following from the fact that the value of (21) is 

less than that of (22), we have     0mn mn
i i  K K
 

. As a result, we conclude the following: 
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   mn mn
i i K K
 

. This implies that demand uncertainty diminishes the marginal benefit of additional 

inventory. This leads to a reduction in the firm’s inventory commitment in stage 1 under demand 

uncertainty. Let 2*S
i

i

K  denote the optimal total inventory level under random demand where the 

second-stage shipments to customers are made under demand uncertainty. The following proposition 

formalizes the findings with reduced marginal benefit from the first-stage inventory commitment under 

demand uncertainty, leading to a smaller level of optimal inventory under demand uncertainty.  

Proposition 10. (a) The marginal benefit from additional inventory under demand uncertainty in the setting 

where random demand is revealed after delivery decisions is smaller than the marginal benefit of additional 

inventory under deterministic demand, i.e.,    mn mn
i i K K
 

. (b) Let Dj = BSj at each FC j for ceteris 

paribus. The optimal amount of total inventory commitment in stage 1 is smaller under the setting when 

demand uncertainty is revealed after shipments are made to the customer than that under the deterministic 

demand setting, i.e., 2* *S D
i i

i i

K K  . 

Propositions 9 and 10 collectively suggest that demand uncertainty, regardless of when random 

demand is revealed, reduces the value of carrying additional inventory. When demand is revealed before 

the delivery decisions, the possibility of overstocking is the driver for this finding. When demand is 

revealed after the delivery decisions, the possibility of over-shipping becomes an additional driving force. 

As a result of these two propositions, we conclude that the optimal inventory commitment under demand 

uncertainty is smaller than that under deterministic demand.  

We have shown in Section 5.3 that the introduction of SaR constraint can lead to a reduction in the 

firm’s initial inventory commitment. It is important to highlight that it would not have been easy to 

demonstrate the reduction in inventory due to SaR under the settings with demand uncertainty because 

demand uncertainty also reduces the firm’s initial inventory commitment. While SaR can cause a 

reduction in the initial inventory commitments, this is not a monotone behavior; the conditions (C1) 

through (C3) highlight the conditions under which the firm reduces its initial inventory levels. When 

these conditions are not met, SaR can lead to an increase in the firm’s initial inventory commitment. The 

reduction in inventory levels under demand uncertainty, on the other hand, is uniform in the risk-neutral 

setting.  

In the online supplement, we show that our main finding pertaining to the decrease in total inventory 

commitment with risk aversion continues to hold under demand uncertainty where random demand is 

revealed after shipment decisions are made. Conditions (C2) and (C3) are replaced with the revised 

conditions (C2′′) and (C3′′) to accommodate stochastic demand. Lemma A1 proves that Condition (C3′′) 

is always satisfied. Corollary A5 shows that our main conclusion, originally presented in Proposition 6, 
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continues to hold under demand uncertainty. Moreover, Corollary A5 requires less restrictive conditions 

than Proposition 6, making our earlier finding more pronounced. 

Using two different settings in Section 5.5, we have presented a comprehensive examination of the 

role demand uncertainty plays in the firm’s delivery operations (stage 2 decisions) and its preparedness 

for disruptions (proactive stocking decisions in stage 1). Our analysis has illuminated three new findings 

that are specifically driven by demand uncertainty. First, Proposition 9 has shown that demand 

uncertainty, when revealed before delivery decisions, reduces the value of inventory preparedness 

because of the risk of overstocking. As a result, we have shown that the firm’s initial inventory 

commitment is reduced in comparison to the deterministic setting. Second, Proposition 10 has confirmed 

this finding when random demand is revealed after shipment decisions are made. In this case, the driving 

force becomes the risk of over-shipping. Collectively, we conclude that the firm’s first-stage stage 

optimal inventory commitment is smaller under both settings of demand uncertainty than its deterministic 

demand equivalent. Third, using Lemma A1 and Corollary A5, we have identified that the finding 

pertaining to the total inventory decreasing in response to risk aversion through SaR becomes a more 

general result when demand is uncertain at the time of delivery decisions.  

In sum, we have shown that our paper’s insights go beyond the case of deterministic demand by 

investigating demand uncertainty comprehensively through two different settings. Our analysis identifies 

three new results driven solely by demand uncertainty. These new results lead to the conclusion that 

inventory preparedness is less valuable under demand uncertainty. 

6.  Numerical Analysis with Company and Public Data 

Using our motivating firm’s network with 15 FCs, this section presents numerical analyses confirming 

that our analytical findings apply in practical settings. Specifically, the analysis demonstrates how the 

optimal inventory investment can decrease when the firm switches from a risk-neutral to risk-averse 

setting. We also introduce a new metric that is useful in practice: Risk Dispersion Index (RDI). RDI 

measures the degree of dispersion in the amount of financial exposure across all facilities stemming from 

disruption risks. Through RDI, we show that our model leads to a reduction in dispersion of risk exposure 

across facilities, and thus, results in a more balanced supply chain architecture. 

6.1. Data regarding Disruption Risks and Costs 

Our analysis examines the influence of eleven different disruption possibilities. The data regarding 

potential disruptions has two sources. The firm has provided eight-year long detailed information about 

the frequency and length of disruptions for seven of the eleven potential disruptions: Bomb threat, break-

in, fire, flood, gas leak, power outage, and weather. The data regarding the remaining four disruptions are 

collected from national sources using the most granular data available. 
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Earthquake data is collected through the US Geological Survey, which shows that earthquakes that 

have a Richter magnitude less than 5.5 result in minor or no impact. Therefore, earthquakes with a Richter 

magnitude greater than or equal to 5.5 help determine the probability of an earthquake impacting an FC. 

The data for hurricanes and tornadoes is obtained from the National Oceanic and Atmospheric 

Administration. Facilities are influenced by hurricanes geographically (primarily in the East Coast of the 

US) and seasonally (from June 1st through November 30th). We derive the probability of an FC being 

impacted by a hurricane by using the county-level data. Tornadoes occur sporadically, and the data is only 

available at the state level. We use the impact region for an average tornado (one mile in width with a 50-

mile-long travel distance) in order to compute the likelihood for each FC.  

For chemical and nuclear disruptions, we first identify the ten most influential chemicals (ethylene 

oxide, oleum, sulfur dioxide, chlorine, furan, bromine, chlorine dioxide, hydrofluoric acid, toluene 2, 6-

diisocyanate, ammonia) that can cause significant disruptions at chemical production facilities. We then 

locate all plants that produce these ten chemicals in the US. Next, we examine the history of disruptions 

(33 years of data) at these facilities through the data collected from the Right-to-Know Network 

(www.rtknet.org). Nuclear disruptions, while limited in number in the US, are collected from the data 

available at the Nuclear Regulatory Commission for all of the operational nuclear power reactors in the 

US. We employ the impact radius of 100 miles for chemical and nuclear disruptions and use the 

proximity of the company’s FCs to these nuclear power reactors in order to determine the frequency and 

length of nuclear disruptions.  

We next describe the process used for estimating the probability and length of disruptions. For the 

company provided data, the frequency at each FC leads to the estimation of the probability at each FC 

independently. The mean and standard deviations regarding the length of disruption are provided in the 

same data set. We assume normal distribution for this set of disruptions. For the disruption events whose 

data is collected from national sources, our granular data regarding the frequency of disruptions leads to 

varying probabilities across FCs. Similarly, we assume that these events also follow normal distribution 

where the mean and standard deviation values are derived from the collected data.  

Our analysis considers the impact of eleven disruptions. Table 2 provides the mean duration and its 

standard deviation of each disruption event, and their corresponding probabilities over a year at each FC. 

Which FC can service a disrupted facility? The firm indicates that an FC located more than 600 miles 

apart is not capable of serving customers in a disrupted region within the 24-hour delivery window. The 

threshold of 600 miles is determined by incorporating order preparation time, packaging, loading and 

unloading in addition to the transportation time. Moreover, on-time delivery performance declines and the 

proportion of late deliveries increases with distance. The firm indicates that the proportion of late 

deliveries increase linearly in time, and it is described as l(dij) = dij /600 for 0 ≤ dij  ≤ 600 and l(dij) = 100% 
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for dij  > 600. It is important to note that our findings and insights do not rely on the linearly increasing 

late deliveries; they continue to hold under convex increasing functions. 

 

 Gas Leak Fire 
Power 
Outage 

Break In Weather 
Bomb 
Threat 

Tornado Flood Hurricane Earthquake 
Chemical and  

Nuclear 
avg. hours 0.9 4.3 5.7 7.9 8.0 30.2 49.3 64.6 7.6 13.8 2920 
std. dev. 1.1 9.0 49.4 10.7 27.3 50.6 19.4 181.4 19.4 28.5 100.0 

FC
ID 

198 2.44% 0.00% 18.29% 0.30% 0.61% 0.00% 3.05% 0.30% 0.63% 0.00% 0.08% 
268 2.01% 0.00% 15.95% 0.29% 0.43% 0.14% 2.23% 0.72% 0.63% 0.00% 0.08% 
269 1.00% 0.13% 7.55% 0.77% 0.00% 0.13% 0.26% 0.27% 0.00% 0.21% 0.02% 
281 1.25% 0.00% 10.63% 0.00% 0.00% 0.00% 2.91% 0.00% 0.00% 0.00% 0.00% 
297 0.72% 0.00% 17.31% 0.24% 0.48% 0.00% 5.23% 0.24% 9.38% 0.00% 0.02% 
368 1.55% 0.31% 3.31% 0.41% 1.14% 0.21% 1.06% 0.62% 3.75% 0.00% 0.06% 
397 0.42% 0.00% 12.92% 0.00% 0.00% 0.00% 0.15% 0.83% 0.00% 0.04% 0.00% 
398 2.53% 0.00% 20.73% 0.16% 0.47% 0.00% 4.02% 0.32% 3.75% 0.00% 0.06% 
469 1.30% 0.00% 13.54% 0.00% 5.47% 0.00% 2.87% 0.52% 0.00% 0.00% 0.04% 
497 1.00% 0.13% 7.55% 0.07% 0.00% 0.13% 0.26% 0.27% 0.00% 0.21% 0.02% 
598 2.50% 0.00% 12.50% 0.00% 3.75% 0.00% 3.86% 0.00% 0.00% 0.00% 0.00% 
697 1.39% 0.00% 1.39% 0.00% 0.00% 0.00% 0.24% 0.00% 0.00% 0.03% 0.00% 
868 0.00% 0.00% 8.33% 0.00% 0.00% 0.00% 2.39% 4.17% 0.00% 0.00% 0.02% 
948 1.30% 0.00% 13.54% 0.00% 5.47% 0.00% 2.87% 0.52% 0.00% 0.00% 0.04% 
983 0.72% 0.00% 17.31% 0.24% 0.48% 0.00% 5.23% 0.24% 9.38% 0.00% 0.02% 

Table 2: The mean and standard deviation of duration (in hours) and the probability over a year of each 
disruption at fulfillment centers. 

 

The cost data is provided by the company that motivated this study. In the event of a disruption at an 

FC, three types of additional costs are incurred: (1) Cost of transportation; (2) cost of late deliveries; and 

(3) cost of vendor shipments. If there is available inventory at the nearby operational FC, the delivery 

would take place using the firm’s own transportation vehicles. On-time deliveries would incur the firm’s 

standard transportation cost per mile, cT, and is multiplied by the distance between the disrupted facility 

and the operational facility. Late deliveries are more expensive than on-time deliveries by an additional 

per-delivery late fee cL. The third possibility is to engage vendors for shipments; however, the shipments 

from vendors are also late. The company motivating our study indicates that the cost of delivery using 

vendors, cV, is 6.8 times the cost of late delivery, cL. Finally, the unit cost of additional inventory, cK, is 

estimated through the inventory holding cost which is inclusive of the additional space, risks such as 

obsolescence and the firm’s internal rate of return. 

The demand data is also provided by the firm. We are given current demand levels along with 

historical data. Using this historical data, we estimate the range of demand values at each FC providing 

the support for the random demand variable. In our analysis pertaining to risk aversion, our SaR 

constraint emphasizes demand realizations at extreme cases, corresponding to the right tail of the 

distribution. In the case of the firm motivating our study, this corresponds to demand realizations that are 

greater than or equal to the value at 97th percentile.  
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We denote the present excess stocking levels with Ki
0. We compare the performance of our model’s 

proposed solution with that of the firm’s current stocking decisions.  

Using the disruption probabilities in Table 2 and the unit holding cost cK = 2, we first calculate the 

“Risk Exposure Index” (REI) score established by Simchi-Levi et al. (2014) representing the financial 

impact of disruptions at each FC. Table 3 presents the REI scores (on a scale of 0 to 100) at each FC at 

the current stocking levels Ki
0. REI score of an FC in the table below represents the cost contribution of 

that FC in the first-stage objective function (1) where Ki = Ki
0 for all i. The FC with the highest cost 

contribution is given a score of 100 (representing the highest exposure) and all remaining FCs are 

assigned scores proportionally based on the ratio of their cost contribution to the FC with the highest cost 

contribution. Table 3 shows that FC 983 has the highest monetary exposure followed by FCs 268 and 

398. FCs 497, 281, 198, 397, 694, 868 and 697 have less than 10% of the maximum monetary risk. 

 

FC ID 983 268 398 368 297 598 948 269 497 198 281 397 694 868 697 

REI 100.00 50.74 45.35 27.18 26.55 20.87 14.22 13.95 9.96 9.88 8.82 6.70 6.11 5.38 0.61 

Table 3: REI scores of each FC where Ki = Ki
0. 

 

6.2. Findings under the Risk-Neutral Setting 

We examine the optimal first-stage stocking decisions using the model presented in Section 4 in the 

absence of the SaR constraint. Table 4 presents the results of optimal stocking decisions for the risk-

neutral analysis under various values of the unit inventory cost cK. We use the expected total cost at cK = 2 

as the benchmark case in Table 4 and show the increase in expected total cost at higher values of cK.  

 

 cK 
FC ID 2 4 6 8 10 

198 1,509 987 987 772 433 
268 0 0 0 0 89 
269 0 0 0 0 0 
281 274 526 0 0 0 
297 1,395 252 0 0 0 
368 0 339 339 339 0 
397 0 0 0 0 0 
398 0 0 0 0 0 
469 772 0 0 0 251 
497 0 0 0 0 0 
598 265 0 0 0 0 
697 0 0 0 0 0 
868 389 0 0 0 0 
948 0 0 0 0 0 
983 252 0 0 0 0 
ΣKi

* 4,856 2,104 1,326 1,111 773 
Expected Total Cost 100% 134% 150% 162% 170% 

Table 4: The impact of the unit inventory holding cost (cK) on the optimal excess stocking decisions 
under the risk-neutral setting. 
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We make two observations from the results pertaining to the risk-neutral analysis. First, the aggregate 

excess stocking investment in the network, described as ∑Ki
*, decreases with higher levels of cK. Second, 

the FC-level excess inventory levels do not necessarily decrease monotonously with respect to unit 

inventory cost cK. For example, the optimal inventory at FC 281 first increases when the unit inventory 

cost increases from cK = 2 to cK = 4, however, it drops to zero when cK = 6. This is an example of non-

monotone inventory investment in an FC. It is important to note that FCs 983 and 297 are within 600-mile 

distance of FC 281, and thus, these three facilities can serve as a backup to each other when there is a 

disruption. With increasing cK values, the firm initially prefers an extra unit of inventory at a relatively 

safer location, FC 281, and decreases the investment at the FCs at riskier locations, FCs 983 and 297. 

When the unit inventory cost increases further, i.e., when cK  6, it becomes too expensive to justify any 

amount of excess inventory at these three facilities; thus, the optimal values drop to zero. 

We next introduce a new metric that is beneficial in describing the relative risk levels at a multi-

facility delivery network. The REI score approach described in Simchi-Levi et al. (2014) calculates the 

monetary risk and helps determine the most vulnerable facilities in a manufacturing setting. However, the 

REI approach does not provide how that risk is distributed across different delivery facilities. To fill in 

this void, we introduce another risk metric called the Risk Dispersion Index (RDI) of network that is 

based on the mean absolute deviation in REI scores in a given network infrastructure:  

RDI in a network = Σ |REI score at each FC – Average REI score| / [number of FCs].   (23) 

Lower RDI scores imply that the network has a more balanced risk profile among its facilities and is 

much less vulnerable to potential disruptions. 

We next present how our proposed model leads to a more balanced risk profile for the firm in 

question. We first solve the optimal stocking decisions using the risk-neutral version of the model 

presented in Section 4, excluding (5), at the unit inventory cost cK = 2. We denote these optimal inventory 

levels in the risk-neutral setting as Ki = Ki
N for all i. Figure 3 presents the comparison of REI and RDI 

scores from our model with the firm’s current inventory levels, denoted Ki = Ki
0 for all i. We assign a 

score of 100 to the FC with the highest cost contribution for Ki  {Ki
0, Ki

N} for all i in order to clearly 

demonstrate the change in risk exposure. Figure 3 establishes the range of REI and RDI scores for the 

given range of demand variations establishing the minimum and maximum risks. In Figure 3, REI and 

RDI scores at the current expected demand levels are expressed with dots.  

Several observations can be made from the results presented in Figure 3. Recall that at the current 

inventory levels (Ki = Ki
0 for all i), FC 983 has the highest risk exposure, and therefore, is the most 

vulnerable facility in the network. In order to provide a fair benchmark for comparison, we anchor the 

highest risk exposure to FC in order to determine the maximum and minimum REI scores establishing the 

range for each FC. The following observations are based on the current expected demand case. First, we 
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observe that when the optimal inventory levels are used, the maximum risk exposure at a facility is 

approximately half the risk exposure of FC 983. Under our proposed solution, FC 983 is no longer the 

facility with the highest risk exposure; rather FC 297 becomes the most vulnerable facility. The REI score 

of FC 297 is 51.0 and is substantially lower than the initial REI score at FC 983. This observation 

demonstrates the significant level of risk reduction obtained through our model at the most vulnerable 

facilities. Second, the average REI score decreases from 24.19 to 17.39, representing a 28.11% overall 

improvement in the average REI score. Given the definition of the REI score, this means that the firm 

may decrease its expected total cost stemming from disruption risk by 28.11% using our model. Third, the 

RDI score shows that the dispersion in the risk exposure is reduced, and therefore, the firm would have a 

more balanced supply chain, making it resilient to disruptions. The RDI score at the current network is 

18.42, and the optimal solution of our model reduces the RDI score to 12.91. The reduction in RDI scores 

represents a 29.91% improvement and demonstrates the fact that the proposed network is prepared in a 

more balanced manner to mitigate potential disruptions than the firm’s present supply chain. In addition 

to the above three observations, it can be observed that demand variations do not have much impact on 

REI scores of most FCs (can be seen from narrow ranges). In conclusion, our proposed solution leads to a 

more resilient supply chain network. 

 

 

FC ID 983 268 398 368 297 598 948 269 497 198 281 397 469 868 697 
Avg. 
REI 

RDI 

REI 
(Ki = Ki

0) 
100.0 50.74 45.35 27.18 26.55 20.87 14.22 13.95 9.96 9.88 8.22 6.70 6.11 5.38 0.61 24.19 18.42 

REI 
(Ki = Ki

N) 
46.03 12.66 19.81 9.74 51.00 11.96 5.99 8.70 3.17 41.78 9.13 2.46 24.94 13.38 0.06 17.39 12.91 

Figure 3: Minimum and maximum REI scores at each FC, average REI and RDI scores, comparing the 
optimal inventory investment decisions (Ki = Ki

N) with the firm’s current inventory levels (Ki = Ki
0) under 

the risk-neutral setting when cK = 2. 
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6.3. Findings under the Risk-Averse Setting 

This section presents the impact of risk aversion through the SaR constraint in designing a supply chain to 

mitigate the negative consequences of disruptions. The firm promises its business customers next day 

delivery, i.e., orders placed before 5:00pm are delivered the next day by 5:00pm, with an on-time delivery 

performance of 97% corresponding to the value of α = 97%. While this delivery performance is not 

promised to each customer individually in the contractual agreements, the firm advertises this 97% on-

time delivery performance to attract business customers. The senior administration is keen on complying 

with this on-time delivery promise and tracks the performance throughout its network. Our analysis 

examines the optimal stocking decisions under various values of β and α = 97% using our SaR constraint. 

Table 5 provides the results pertaining to the optimal inventory decisions under increasing risk 

aversion at cK = 2. We use the total expected cost of the risk-neutral setting as the benchmark cost and 

show how the expected total cost increases under risk aversion. 

 

 Risk 
Neutral 

β 
FC ID 1200 1150 1100 1050 1000 950 900 

198 1,509 1,509 1,509 1,509 1,509 1,509 1,509 - 
268 0 0 0 0 0 0 0 - 
269 0 0 0 0 0 0 0 - 
281 274 538 820 1,103 1,385 1,668 2,105 - 
297 1,395 1,132 850 567 285 0 0 - 
368 0 0 0 0 0 0 0 - 
397 0 0 0 0 0 0 0 - 
398 0 0 0 0 0 0 0 - 
469 772 772 772 772 772 772 772 - 
497 0 0 0 0 0 0 0 - 
598 265 265 265 265 265 265 265 - 
697 0 0 0 0 0 0 0 - 
868 389 389 389 389 389 389 389 - 
948 0 0 0 0 0 0 0 - 
983 252 0 0 0 0 250 252 - 
ΣKi

* 4,856 4,605 4,605 4,605 4,605 4,853 5,292 - 
Expected Total Cost 100% 100.2% 101.1% 102.0% 102.9% 104.4% 108.0% - 

Table 5: The impact of risk aversion (with decreasing values of β) on the optimal inventory decisions 
when cK = 2.  

 

The results in Table 5 show one of the most important findings in this paper: When the firm switches 

from a risk-neutral setting (i.e., ignoring the SaR constraint) to a risk-averse setting (i.e., incorporating the 

SaR constraint), it might end up reducing its initial stocking decision. One would intuit that, given a 

constant value of initial cost cK, the firm would always increase its inventory investment under risk 

aversion. However, the total inventory level, designated with ∑Ki
* in Table 5, decreases when the firm 

introduces risk aversion. While the total inventory is 4,856 units under the risk neutral setting, it is equal 

to 4,605 units for β = 1200 representing a risk-averse setting. This observation highlights the theoretical 

findings presented in Proposition 6, demonstrating that it is possible for this phenomenon to be observed 



37 
 

in practice. Moreover, this data-driven demonstration shows that this finding can be present in broader 

network configurations with more than three FCs. In the network of our focal firm, FCs 281, 983 and 297 

are the main drivers of this result. FCs 983 and 297 are located relatively close to each other and can be 

affected together by broad-impact disruptions similar to how FC 1 and FC 2 are disrupted in the analysis 

in Section 5.3. FC 281 is located farther from these facilities resembling FC 3 of the same analysis. If the 

inventory increase at FC 281 were not accompanied by a decrease in FCs 297 and 983 as our model 

suggests, the firm would have ended up with approximately 31% more inventory than the optimal risk-

averse amount at these three FCs. In the entire network, this would correspond to approximately 11% 

more inventory than the optimal risk-averse amount of 4,605. Thus, our paper’s important finding adds 

value to the firm by cutting a significant amount of unnecessary inventory by preventing the firm from 

blindly increasing inventory in response to risk aversion. 

Second, as the value of β further decreases below 1050 (representing higher degrees of risk aversion) 

the firm starts investing more heavily in inventory in order to comply with the SaR constraint. As a result, 

the total stocking decision starts to increase. Figure 4 demonstrates this result by showing the total 

optimal inventory decisions under the risk-neutral and risk-averse settings (with various values of β).  

 

 

Figure 4: The impact of risk aversion on the sum of optimal inventory decisions. 
 

 

Third, FCs with the highest initial REI scores at Ki = Ki
0 continue to get limited excess inventory, 

while FCs with the lower initial REI scores continue to receive excess inventory under risk aversion. For 

example, at β = 1,200, we observe that the facilities with the highest initial REI scores (FCs 983, 268, 

398) receive no excess inventory. On the other hand, facilities that are tagged with lower initial REI 

scores carry excess inventory such as FCs 198, 469, and 868, all with initial REI scores lower than 10. 
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Thus, risk aversion leads the firm to add excess inventory at FCs that are initially perceived as less 

vulnerable in order to be able to make faster deliveries and provide better customer service. 

Our proposed model continues to lead to balanced supply chain preparedness against disruptions. 

Figure 5 presents the REI and RDI scores under risk aversion when β = 950 and compares the results with 

the firm’s current network. The analysis uses the demand fluctuations at each FC from earlier analysis 

pertaining to the risk-neutral setting. We denote the optimal inventory decisions under risk aversion with 

Ki = Ki
A.  

 

 

FC ID 983 268 398 368 297 598 948 269 497 198 281 397 694 868 697 
Avg. 
REI 

RDI 

REI 
(Ki = Ki

0) 
100.0 50.74 45.35 27.18 26.55 20.87 14.22 13.95 9.96 9.88 8.82 6.70 6.11 5.38 0.61 24.19 18.42 

REI 
(Ki = Ki

A) 
57.89 12.66 19.81 9.74 14.22 11.96 5.99 8.70 3.17 55.05 41.78 2.46 20.97 13.38 0.06 18.52 13.72 

Figure 5: Minimum and maximum REI scores at each FC, average REI and RDI scores, comparing the 
optimal inventory investment decisions (Ki = Ki

A) with the firm’s current inventory levels (Ki = Ki
0) under 

risk-averse setting when β = 950 and cK = 2. 
 

Several observations can be made from the results presented in Figure 5. Recall that at the current 

inventory levels (Ki = Ki
0 for all i), FCs 983 and 268 had the highest REI scores with 100 and 50.74, 

respectively. First, our proposed model reduces the REI scores of these two facilities to 57.89 and 12.66, 

respectively. FC 983 continues to be the facility with the highest risk exposure, and thus, it still is the 

most vulnerable facility in the network. However, its monetary risk exposure is reduced from 100 to 

57.89, representing a substantial improvement at the most vulnerable facility. Second, the average REI 

score decreases from 24.19 to 18.52, representing a 23.44% overall improvement. This indicates that the 
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firm may decrease its expected total cost stemming from disruption risk by 23.44% under risk aversion. 

Third, the RDI scores show that the dispersion in the risk exposure is reduced, and therefore, the firm 

would have a more balanced supply chain that is resilient to disruptions. The RDI score is reduced from 

18.42 to 13.72 in the risk-averse optimal solution. FCs 198 and 281 see an increase in their REI scores 

because of the increase in their initial inventory commitment due to risk aversion. However, the RDI 

scores are reduced by 25.52%, leading to a more balanced supply chain in terms of preparing for 

disruptions when compared with the current supply chain infrastructure. In conclusion, our proposed 

solution leads to a more resilient supply chain network with the ability to provide better customer service. 

7.  Conclusions and Managerial Insights 

This paper examines disruption risks and develops risk mitigation strategies for a Fortune 150 firm that 

considers on-time delivery performance its winning criterion for business customers. It introduces an 

operational requirement coined as Service at Risk (SaR) constraint where the probability of late deliveries 

exceeding a threshold is limited with a tolerable probability. The SaR constraint differs from the 

traditional value-at-risk (VaR) and conditional value-at-risk (CVaR) constraints, and financial risk 

mitigation methods in the form of insurance, which does not positively impact firm’s operational 

performance.  

The proposed model combines proactive and reactive risk mitigation strategies to counter disruption 

risks in delivery operations. The analysis integrates a comprehensive set of disruptions provided by the 

firm and collected from national sources in a granular manner. Prior to the disruption, the firm determines 

the optimal amount of inventory to be kept in each FC as a proactive measure. In the event of a disruption 

at an FC, the firm solves a transportation problem that minimizes the total contingency cost while 

complying with the SaR constraint; this corresponds to the reactive measure.  

This paper makes four main contributions. First, it shows that the total amount of excess inventory 

committed as a result of disruption risk can decrease with risk aversion. This finding departs from the 

results presented in earlier publications where inventory increases with higher disruption risks. The result 

stems from the fact that the firm prefers to locate one unit of additional inventory at a distant FC by 

enabling the reduction in the inventories of two nearby FCs. We show that this finding is robust as it 

holds under various settings that incorporate demand uncertainty. We also demonstrate numerically that 

this phenomenon occurs in the network setting of the firm motivating our study.  

Second, the study introduces a new metric called Risk Dispersion Index (RDI) that evaluates the 

dispersion in risk exposure across facilities in the network. Through RDI, our proposed proactive and 

reactive risk mitigation strategies lead to more resilient supply chain operations with lower and balanced 

levels of risk exposure at the firm’s FC network. Comprehensive numerical illustrations with varying 

demand values at each FC demonstrate that our model leads to substantial improvements in REI and RDI 
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scores. In the risk-neutral setting, REI and RDI scores are reduced by 28.11% and 29.91% on average, 

respectively. In the risk-averse setting, our model reduces REI and RDI scores by 23.44% and 25.52% on 

average, respectively.  

Third, the study shows that an FC can abandon its customers in order to serve the customers of a 

disrupted facility. This result occurs when late delivery percentages increase in distance in a convex 

manner. Rather than serving its own customers, the network can create a chain of rerouting support. This 

is referred to as the abandonment policy, which is found to occur more frequently under risk aversion. 

Fourth, we show that incorporating demand uncertainty causes a decrease in the firm’s initial 

proactive inventory commitment. This finding is driven by a reduced marginal benefit of inventory 

commitment under demand uncertainty. In our analysis, we examine the influence of demand uncertainty 

with two different settings. In the first variation, random demand is realized before delivery decisions are 

made. In the second setting, delivery decisions are made before observing the customer order; as such, 

they are made in the presence of demand uncertainty. Diminishing marginal benefit of inventory is caused 

by the risk of overstocking in the first variation and the risk of over-shipping in the second variation. 

Collectively, both settings lead us to the same conclusion: Demand uncertainty causes a reduction in the 

risk-neutral firm’s initial inventory commitment. We also conclude that our main findings continue to 

hold under demand uncertainty (including both variations). Specifically, under demand uncertainty, our 

study shows that (1) the firm’s total inventory commitment can be decreasing with risk aversion and (2) 

an operational FC can abandon its own customers to serve the customers of a disrupted facility. 

Our study examines distribution operations in a single country, and it can be used to study disruption 

risks in global supply chain operations. One of the important features in our study is that two fulfillment 

centers can get disrupted at the same time; this leads to new insights: (1) Inventory preparedness does not 

have to be anchored to geographic proximity, i.e., backup inventories can be located in a distant facility 

rather than a nearby facility, and (2) inventory commitment can decrease with risk aversion. Recent 

developments associated with coronavirus shows the importance of analyzing disruptions at multiple 

facilities at the same time, as the pandemic occurred in many countries at the same time and in distant 

locations. Our study advocates for diversifying the location of inventories in preparing for disruptions 

while determining the necessary amount of stocking levels in the presence of disruption risks. During 

catastrophic events such as the spread of coronavirus, diversification of inventory locations is particularly 

beneficial both from the ability to use supplies from the regions that are not immediately impacted and 

from those geographies that recover from the pandemic earlier. By shedding light on the influence of 

disruption possibilities on multiple facilities occurring concurrently, our study will be beneficial for future 

research examining preparedness for disruptions at multiple geographies from a broader scope and with a 

global context. 
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Proof of Proposition 1. Recall from Section 4 that dii = 0 and l(dii) = 0. Therefore, we have the following: 

∂  2,

mn

mn x K
 

/∂xii
mn = – (cV + cL) ≤ ∂  2,

mn

mn x K
 

/∂xij
mn = cTdij + cLl(dij) – (cV + cL) for all (i, j) – note 

that  2,

mn

mn x K
 

 is linear in xij
mn. Combined with ∂2l(dij)/∂dij

2 = 0 and (4), it follows that xii
mn* = Di for 

each FC i  Λ(n).   

Proof of Proposition 2. From (2), one can see that each unit of vendor shipment to a disrupted FC j (i.e., 

j  Λ(n)) costs cV + cL whereas each unit of shipment made from FC i costs cTdij + cLl(dij). Following 

from ∂l(dij)/∂dij ≥ 0, there exists a unique threshold dH that solves cV + cL = cTdH + cLl(dH). We define Γ(j) 

as the set that includes every FC i such that dij ≤ dH. This set Γ(j) represents the FCs that can potentially 

back up FC j in case of a disruption where cTdij + cLl(dij) ≤ cV + cL. The FCs that are outside of Γ(j) will 

not be utilized as backup, i.e., xij
mn* = 0 for each FC i  Γ(j), because vendor shipment becomes more 

economic, i.e., cT(dH + ε) + cLl(dH + ε) > cV + cL for any ε > 0. Also, recall from Proposition 1 that 

operational FCs always first serve their own demand region when ∂2l(dij)/∂dij
2 = 0, i.e., xii

mn* = Di for each 

FC i  Λ(n). Therefore, combined with (3), we can conclude that a disrupted region j receives vendor 

shipment if its demand Dj is greater than the total excess inventory of the operational FCs within dH miles, 

denoted 
   , ,

i
i j i n i j

K
  
 .   

Proof of Proposition 3. Following from d21 < d31 ≤ dH, we have  

∂  2,

mn

mn x K
 

/∂x21
mn < ∂  2,

mn

mn x K
 

/∂x31
mn ≤ 0. 

This implies that FC 2 is the primary backup option for the disrupted region 1. Therefore, the excess 

inventory at FC 2 (i.e., K2) should certainly be utilized to partially recover the demand in region 1 (i.e., D1 

> K2). For the remaining demand D1 – K2, there are two possible strategies that the firm can follow. In the 

first strategy, FC 2 serves its own region with the dedicated portion of its inventory (i.e., D2) while the 

excess inventory at FC 3 (i.e., K3) is utilized to make shipments directly to the disrupted region 1. The 

following expression 

∂  2,

mn

mn x K
 

/∂x22
mn + ∂  2,

mn

mn x K
 

/∂x31
mn                (24) 
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represents the incremental cost associated to this strategy which we refer to as the loyal policy. In the 

second strategy, FC 2 abandons its own region and uses its dedicated inventory to make shipments to the 

disrupted region 1 while FC 3 uses its excess inventory K3 to serve the abandoned customers in region 2. 

The following expression 

∂  2,

mn

mn x K
 

/∂x21
mn + ∂  2,

mn

mn x K
 

/∂x32
mn                (25) 

represents the incremental cost associated to this strategy which we refer to as the abandonment policy. 

Note that, following from {d21, d32, d31} ≤ dH, d22 = 0 and l(d22) = 0, both (24) and (25) are negative 

meaning that both policies can decrease the cost. The optimal strategy is the loyal policy if (24) ≤ (25) 

which is the case when (8) holds. This implies that x21
mn* = K2, x22

mn* = D2, x32
mn* = 0, x31

mn* = min{D1 – 

K2, K3}. The optimal strategy is the abandonment policy if (24) > (25) which is the case when (8) does not 

hold. This implies that x21
mn* = min{D1, K2 + min{D2, K3}}, x22

mn* = (D2 – K3)+, x32
mn* = min{D2, K3}, 

x31
mn* = min{(D1 – K2 – min{D2, K3})+, (K3 – D2)+}.  

It is worth noting that l(d31) – l(d32) – l(d21) in (8) increases with the degree of convexity of the 

lateness function l(dij) because {d21 , d32} < d31. Therefore, (8) does not hold if the lateness function l(dij) 

is sufficiently convex. Otherwise, (8) holds, i.e., when the lateness function l(dij) is linear, concave or 

weakly convex. 

Note that, regardless of (8), FC 3 always serves its own region with the dedicated portion of its 

inventory (i.e., D3) because 

∂  2,

mn

mn x K
 

/∂x33
mn + ∂  2,

mn

mn x K
 

/∂x21
mn < ∂  2,

mn

mn x K
 

/∂x31
mn + ∂  2,

mn

mn x K
 

/∂x23
mn         

due to d21 < d31, d33 = 0 and l(d33) = 0. This implies that x33
mn* = D3 and x23

mn* = 0.   

Proof of Proposition 4. The risk-neutral second stage, described with (2), (3), (4) and (6), is a 

transportation problem where operational FCs along with the vendors have sufficient supply to meet the 

demand in all regions. Therefore, there always exists an optimal solution to the risk-neutral problem in 

stage 2. We define  mn
i K


 as the dual price of the supply constraint (3) for FC i evaluated at K


 under a 

given (m, n). Dual price  mn
i K


 fetches a negative value if (3) is binding; otherwise, it is zero. The value 

of  mn
i K


 is a non-decreasing step function in Ki. 

The first-order derivative of the stage-1 objective function (1) with respect to Ki can be written as  

∂  1 K


/∂Ki = cK +  
1 1

M N
mn

mn i
m n

p 
 
 K


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where the second term is the weighted average of the dual price values for FC i. At high values of Ki, the 

second term will drop to zero. Therefore, ∂  1 K


/∂Ki will fetch its maximum value of cK which is 

positive. This guarantees that the minimization problem in stage 1 is bounded and there exists an optimal 

solution.   

Proof of Proposition 5. Part (a): Left-hand side of (8) can be interpreted as the change in lateness due to 

a switch from Policy L to Policy A. If l(d31) – l(d32) – l(d21) is positive (negative), lateness decreases 

(increases) when switched from Policy L to Policy A for given K


. Recall that the service-at-risk 

constraint (5) is defined over late deliveries. Therefore, if l(d31) – l(d32) – l(d21) > 0, then Policy A leads to 

a less tight (5) than Policy L following from 

   A L
ij ij ij ij

j i j i

l d x l d x    

where xij
A and xij

L denote the optimal Policy A and Policy L decisions, respectively. On the other hand, if 

l(d31) – l(d32) – l(d21) ≤ 0, then Policy L leads to a less tight (5) than Policy A following from 

   L A
ij ij ij ij

j i j i

l d x l d x  .  

Part (b): Policy A being optimal in the risk-neutral setting indicates that it is more economic than Policy 

L. Following from Proposition 3, this implies that [l(d31) – l(d32) – l(d21)] > (cT/cL)[d32 + d21 – d31] > 0. 

Since we have l(d31) – l(d32) – l(d21) > 0, Policy A leads to a less tight (5) than Policy L as shown above. 

Therefore, Policy A continues to be optimal in the risk-averse setting. 

Part (c): Policy L being optimal in the risk-averse setting indicates that it leads to a less tight (5) than 

Policy A. This implies that [l(d31) – l(d32) – l(d21)] ≤ 0 as shown above. Therefore, we have [l(d31) – l(d32) 

– l(d21)] < (cT/cL)[d32 + d21 – d31] which indicates that Policy L is more economic than Policy A as shown 

in Proposition 3. Therefore, Policy L continues to be optimal in the risk-neutral setting. 

Part (d): In part (b), we established that Policy A is always optimal when [l(d31) – l(d32) – l(d21)] > 

(cT/cL)[d32 + d21 – d31] > 0. In part (c), we established that Policy L is always optimal when [l(d31) – l(d32) 

– l(d21)] ≤ 0 < (cT/cL)[d32 + d21 – d31]. We next examine the case when 0 < [l(d31) – l(d32) – l(d21)] ≤ 

(cT/cL)[d32 + d21 – d31]. In this case, Policy L is more economic, however, Policy A leads to a less tight (5). 

Let us characterize the risk neutral optimal distribution policies in the following four sets:  

ΩLS = {[l(d31) – l(d32) – l(d21)] > (cT/cL)[d32 + d21 – d31] > 0 and (5) satisfied: Policy L is optimal in the 

risk-neutral and risk averse settings} 

ΩLN = {[l(d31) – l(d32) – l(d21)] > (cT/cL)[d32 + d21 – d31] > 0 and (5) is not satisfied: Policy L is optimal 

in the risk-neutral, but it violates SaR constraint in the risk-averse setting} 

ΩAS = {[l(d31) – l(d32) – l(d21)] ≤ 0 < (cT/cL)[d32 + d21 – d31] and (5) satisfied: Policy A is optimal in the 

risk-neutral and risk averse settings} 
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ΩAN = {[l(d31) – l(d32) – l(d21)] ≤ 0 < (cT/cL)[d32 + d21 – d31] and (5) is not satisfied: Policy A is optimal 

in the risk-neutral, but it violates SaR constraint in the risk-averse setting}. 

Thus,  

P[Policy A is optimal] in the risk-neutral setting = P[ΩAS] + P[ΩAS]. 

In the set ΩAN, when the SaR constraint (5) is violated, the optimal solution in the risk-averse setting 

will not switch to the loyal allocation policy; rather, it will adjust quantity decisions in the same allocation 

scheme. On the other hand, Proposition 3 establishes that, when the SaR constraint (5) is violated in the 

set ΩLN, the optimal policy switches from Policy L to Policy A. Thus, the probability set that Policy A is 

optimal in the risk-averse setting is:  

 P[Policy A is optimal] in the risk-neutral setting = P[ΩAS] + P[ΩAS] + P[ΩLN]  

  >  P[Policy A is optimal] in the risk-neutral setting = P[ΩAS] + P[ΩAS].  

The above proof implies that, even though Policy L can be optimal in the risk-neutral setting, SaR 

constraint in (5) can cause a switch to Policy A in the risk-averse setting, leading to a higher probability 

that Policy A is the optimal distribution allocation in the risk-averse setting.   

Proof of Proposition 6. Condition (C1) states that the risk-neutral solution is (K1
*, K2

*, K3
*) = (K1

N, K2
N, 

0) such that {K1
N, K2

N} > 0. We have a total of four (m, n) pairs: (L, 1), (L, 2), (L, 3), (H, 4). In the risk-

averse setting, the risk-neutral solution (K1
N, K2

N, 0) does not comply with the risk constraint (5) for (m, n) 

= (H, 4) following from (C2) where ε is a small positive infinitesimal quantity. Again from (C2), we see 

that the risk-constraint (5) for (m, n) {(L, 1), (L, 2), (L, 3)} never becomes binding. In order to comply 

with (5) for (m, n) = (H, 4), following from l(min{d31, d32}) < 1, the only viable action is to increase the 

value of K3 to K3
A which solves [l(min{d31, d32})K3

A + (D1 + D2 – K3
A)]ταH4 = ; this can be written as K3

A 

= ε/[(1 – l(min{d31, d32}))ταH4]. This causes a deviation from the risk-neutral optimal decision. Condition 

(C3) states that, at this new solution (K1
N, K2

N, K3
A), the first-order derivatives with respect to K1 and K2 

are positive: {∂  1 K


/∂K1 | (K1N, K2N, K3A), ∂  1 K


/∂K2 | (K1N, K2N, K3A)} ≥ 0. This means that the values of 

both decisions should decrease. Recall that the risk-neutral solution in (C1) yields K1 + K3 = K1
N and K2 + 

K3 = K2
N. Following from the proof of Proposition 4, (1) is piecewise linear in Ki. Therefore, increasing 

K3 from zero to K3
A should be accompanied by the same amount of decrease in K1 and K2 each. As a 

result, the risk-averse optimal solution is (K1
*, K2

*, K3
*) = (K1

N – K3
A, K2

N – K3
A, K3

A).   

Proof of Proposition 7.  

(a) Using the same set of xij
mn values that satisfy the VaR constraint in (11) implies that  

    
1mn mn mn VL

ij ij j ij
j i j iL V L V

c
P l d x D x

c c c c


 

     
                

    . 
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Note that    mn mn mn mn mn mnL
ij ij j ij ij ij j ij

j i j i j i j iL V

c
l d x D x l d x D x

c c
 

       
                   

         

because cL/(cL + cV) < 1. If  ≤ (V
=/(cL + cV)), it can be seen that the SaR probability in (5) is violated, i.e.,  

  mn mn mn
ij ij j ij

j i j i

P l d x D x  
   

     
    

      

>    
mn mn mn VL

ij ij j ij
j i j iL V L V

c
P l d x D x

c c c c




     
              

     = (1 – α).  

(b) Using the same set of xij
mn values that satisfy the VaR constraint in (11) implies that  

   1mn mn mnL V V
ij ij j ij

j i j iL L

c c
P l d x D x

c c


 

     
               

    . 

Note that    mn mn mn mn mn mnL V
ij ij j ij ij ij j ij

j i j i j i j iL

c c
l d x D x l d x D x

c
 

       
                   

        

because (cL + cV)/cL > 1.  If  ≥ (V
=/cL), it can be seen that the SaR probability in (5) is also satisfied, i.e.,  

  mn mn mn
ij ij j ij

j i j i

P l d x D x  
   

     
    

     

 <   mn mn mnL V V
ij ij j ij

j i j iL L

c c
P l d x D x

c c




     
             

    = (1 – α).  

Proof of Corollary 1.  

(a) Using the same set of xij
mn values that satisfy the SaR probability in (5) implies that  

   1mn mn mn
ij ij j ij

j i j i

P l d x D x   
   

       
    

    . 

Note that    mn mn mn mn mn mnL V
ij ij j ij ij ij j ij

j i j i j i j iL

c c
l d x D x l d x D x

c
 

       
                   

        

because (cL + cV)/cL > 1.  If V ≤ cL=, it can be seen that the VaR probability in (11) is violated, i.e.,  

  mn mn mnL V V
ij ij j ij

j i j iL L

c c
P l d x D x

c c




     
             

     > 

  mn mn mn
ij ij j ij

j i j i

P l d x D x   
   

     
    

    = (1 – α).  

(b) Using the same set of xij
mn values that satisfy the SaR constraint in (5) implies that  

   1mn mn mn
ij ij j ij

j i j i

P l d x D x   
   

       
    

    . 

Note that    mn mn mn mn mn mnL V
ij ij j ij ij ij j ij

j i j i j i j iL

c c
l d x D x l d x D x

c
 

       
                   

        

because (cL + cV)/cL > 1.  If V ≥ (cL + cV) =, it can be seen that the VaR probability in (11) is also 
satisfied, i.e.,  



49 
 

  mn mn mnL V V
ij ij j ij

j i j iL L

c c
P l d x D x

c c




     
             

     < 

  mn mn mn
ij ij j ij

j i j i

P l d x D x   
   

     
    

    = (1 – α).  

Proof of Proposition 8. (a) The second-stage objective function is a special form of minimizing CVaR. 

Let us rewrite the objective function here.  

 
 

 
2,

0
min

mn

mn mn
T ij ij L ij ij

mnmn j i j i

mn mn
V L j ij

j i

c d x c l d x

E
c c D x




 
              
   

 

 x
x K 

   .  

The above second-stage objective function is equivalent to minimizing a CVaR objective function where 

the tolerable loss C and the tolerated loss probability α are set to zero, i.e.,  

 

 
 2,

0
min 0

mn

mn mn
T ij ij L ij ij

mn mnj i j i

mn Cmn
V L j ij

j i

c d x c l d x

E
c c D x

 


  
  

     
          

 

 x
x K 

   =  2,
0

min
mn

mn

mn



x
x K 

 
. 

Given that C = 0 and α = 0, the above CVaR minimization is the most stringent form of CVaR risk 

measure.  

 For a given set initial inventory commitment vector K


, we define the optimal solution of a delivery 

configuration as  
*mn

x


. Let us also define C
0 as follows:  

 

 

* *

0

*

mn mn
T ij ij L ij ij

mnj i j i

C mn
V L j ij

j i

c d x c l d x

E
c c D x

 

  
  

    
          

 

 
 . 

The above optimal solution would minimize CVaR even in the most stringent CVaR risk measure with C 

= 0 and α = 0, corresponding to all possible disruption length scenarios.  

(b) We next compare the optimal solution developed under a SaR constraint with one developed under a 

CVaR risk measure with C > 0 and α = 0.  

 

 
 2,

0
min 0

mn

mn mn
T ij ij L ij ij

mn mnj i j i

mn Cmn
V L j ij

j i

c d x c l d x

E
c c D x

 


  
  

     
          

 

 x
x K 

    

= 

 

 0
min

mn

mn mn
T ij ij L ij ij

mnj i j i

Cmn
V L j ij

j i

c d x c l d x

E
c c D x

 


  
  

   
          

 

 x
 

   
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=  2,
0

min
mn

mn

mn



x
x K 

 
 – C. 

Because C is a constant term, minimizing CVaR with C > 0 and α = 0 leads to the same optimal delivery 

solution with the objective function in (2). Thus, minimizing the CVaR for a positive tolerated loss is 

equivalent to minimizing CVaR with a fixed term of – C subtracted from the derived optimal objective 

function value. Note that this result holds true for all C ≤ C
0; otherwise, no solution is feasible under 

both criteria.   

(c) Consider CVaR minimization with C = 0 and α > 0. Let τ(1 – α) represent the point where the 

distribution of  is at (1 – α) percentile, i.e.,  1P    
  
    = (1 – α). It should be observed that the 

optimal solution of a delivery configuration as  
*mn

x


 is a feasible solution for the CVaR minimization 

where    

 

 
   2, 1

0
min 0

mn

mn mn
T ij ij L ij ij

mn mnmnj i j i

mn Cmn
V L j ij

j i

c d x c l d x

E
c c D x

    


  
  

      
          

 

 x
x K  &  

     

 because the same as  
*mn

x


 solution for all   realizations including those where  1    . In conclusion, 

an optimal solution that complies with SaR constraint in stage 2 is also optimal for CVaR with all 

tolerated losses of C and is feasible for all tolerated loss probabilities of (1 – α), making the same 

solution to be compliant with CVaR objective. However, the solution developed under a SaR constraint 

cannot be guaranteed to be the optimal solution for a CVaR minimization with C > 0 and α > 0.  

Corollary A1 (to Proposition 3). Suppose FC 1 is disrupted, i.e., 1  Λ(n), and FCs 2 and 3 are 

operational, i.e., {2, 3}  Λ(n) where {d21, d32} < d31 ≤ dH. Consider the scenario when the realized 

demand D1
r in FC 1 is greater than the excess inventory in FC 2.  

(a) (Loyal Policy): If (8) holds, operational FCs 2 and 3 prioritize serving their own customers. 

(b) (Abandonment Policy): If (8) does not hold, FC 2 prefers to abandon its customers in region 2 in 

order to serve the customers of FC 1 while FC 3 serves the customers that FC 2 abandons.  

Proof of Corollary A1. The proof follows from the proof of Proposition 3 by replacing D1, D2 and D3 

with D1
 r, D2

 r and D3
r.  

Proof of Proposition 9. (a) For a given (m, n), 
 

i i
i n

K D


  is the total amount of supply at the 

operational FCs. In stage 2, if 
 

r
j i i

j i n

D K D


   , the dual price of the supply constraint (3) remains to 

have the same structure as in the deterministic demand case, i.e.,  mn
i K


 is a non-decreasing, non-
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positive step function in K


. If 
 

r
j i i

j i n

D K D


   , then the dual price of the supply constraint (3) 

becomes zero for each i. Thus, we have 

∂  1 K


/∂Ki = cK +  
 1 1

1
M N

mn
mn i i i

m n i n

p G K D
  

   
          

 K


. 

Following from G(.) being 0 ≤ G(ꞏ) ≤ 1 by definition and  mn
i K


 being non-positive, we have 

   mn mn
i i K K
 

 for all (m, n).  

(b) The proof follows from part (a). The value of (14) reaches zero faster than the value of (9) as Ki 

increases. This leads to 1* *S D
i i

i i

K K  .  

Development of Corollary A2: 

We next show that our main result where the total inventory commitment can be decreasing under risk 

aversion continues to hold under stochastic demand in the setting where demand uncertainty is revealed 

before shipment decisions. In a three FC setting, this finding occurs when there is a disruption probability 

that impacts two nearby facilities at the same time. It is important to observe that the SaR constraint (5) is 

now required to be satisfied in the worst-case scenario which corresponds to the case when (i) disrupted 

FCs 1 and 2 have realized demand values at their corresponding upper support, i.e., D1
r = D1

H and D2
r = 

D2
H, and (ii) the operational FC 3 has no leftover inventory after satisfying its own customers’ demand 

D3
r. For simplicity in item (ii), let us consider the case when the demand in FC 3 has a point distribution, 

i.e., D3
r = 3D , with probability 1 such that, after satisfying its own customers there is no excess inventory 

left in FC3. This represents that Condition (C1) developed in Section 5.3 holds in this scenario. We next 

adjust Condition (C2) to reflect the realizations of demand uncertainty in FCs 1 and 2:  

(C2′): (D1
H + D2

H)ταH4 =  + ε >  ≥ {D1
HταL1, D2

HταL2, 3D ταL3}  

where ε is a small positive infinitesimal quantity representing the switch from risk-neutral setting to risk-

averse setting. The revised Condition (C2′) enforces the substitution effects described earlier in satisfying 

the SaR constraint to hold true in the worst-case scenario where D1
r = D1

H and D2
r = D2

H. We also adjust 

Condition (C3) as follows: 

(C3′): |pL2λ1
L2(K1

N, K2
N, K3

A) + pL3λ1
L3(K1

N, K2
N, K3

A)| ≤ cK, 

 |pL1λ2
L1(K1

N, K2
N, K3

A) + pL3λ2
L3(K1

N, K2
N, K3

A)| ≤ cK  

The revised Condition (C3′) under demand uncertainty accounts for the risk of overstocking. It is worth 

mentioning that Condition (C3′) is more likely to hold than Condition (C3) following from Proposition 

9(a). 
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Using the above-described worst-case scenario, Corollary A2 shows that our main finding where the 

total inventory commitment in stage 1 can be decreasing with risk aversion continues to exist under 

stochastic demand in the setting where demand uncertainty is revealed before shipment decisions.  

Corollary A2 (to Proposition 6). Suppose l(min{d31, d32}) < 1. Let (C1), (C2′), (C3′) hold and let D3
r = 

3D  with probability 1. The total inventory commitment under risk aversion is smaller than the total risk 

neutral inventory commitment.  

Proof of Corollary A2. The proof follows from the proof of Proposition 6 by replacing (i) conditions 

(C2) and (C3) with conditions (C2′) and (C3′); (ii) D1, D2 with random variables 1D and 2D ; and (iii) 

satisfying the SaR constraint in (5) at the worst-case scenario where D1
r = D1

H, D2
r = D2

H and D3
r = 3D . 

 

Corollary A3 (to Proposition 3 and Corollary A1). Suppose FC 1 is disrupted, i.e., 1  Λ(n), and FCs 2 

and 3 are operational, i.e., {2, 3}  Λ(n) where {d21, d32} < d31 ≤ dH. Consider the scenario when the 

base stock BS1 in FC 1 is greater than the base stock BS2 in FC 2.  

(a) (Loyal Policy): If (8) holds, operational FCs 2 and 3 prioritize serving their own customers. 

(b) (Abandonment Policy): If (8) does not hold, FC 2 prefers to abandon its customers in region 2 in 

order to serve the customers of FC 1 while FC 3 serves the customers that FC 2 abandons.  

Proof of Corollary A3. The proof follows from the proofs of Proposition 3 (and Corollary A1) by 

replacing D1, D2 and D3 (and D1
 r, D2

 r and D3
r in Corollary A1) with BS1, BS2 and BS3.  

Corollary A4 (to Proposition 4). The risk-neutral problem described with (1), (17), (18), (19) and (6) is 

bounded and there exists an optimal solution. 

Proof of Corollary A4. The proof is similar to that of Proposition 4. The risk-neutral second stage 

problem is described with the objective function in (17) subject to constraints in (18), (19) and (6). This 

second-stage formulation is a transportation problem where operational FCs along with the vendors have 

sufficient supply to meet the demand in all regions. Therefore, there always exists an optimal solution to 

the risk-neutral problem in stage 2. We define  mn
i K


 as the dual price of the supply constraint (18) for 

FC i evaluated at K


 under a given network (m, n). Dual price  mn
i K


 is continuously non-decreasing in 

Ki because  

       2,

1 1 1 1

mn

mn
mn mn mn

T ij L ij j ij ij V j ijmn
i iij

E c d c l d F l d x c F x
x


                               

 
x K
 

  
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is continuously non-decreasing in mn
ijx  where Fj(ꞏ) denotes the cumulative distribution function of random 

demand jD .  mn
i K


 fetches a negative value if (18) is binding; otherwise, it is zero. The first-order 

derivative of the stage-1 objective function (1) with respect to Ki can be written as  

∂  1 K


/∂Ki = cK +  
1 1

M N
mn

mn i
m n

p 
 
 K


  

where the second term is the weighted average of the dual price values for FC i. At high values of Ki, the 

second term will drop to zero. Therefore, ∂  1 K


/∂Ki will fetch its maximum value of cK, which is a 

positive value. This guarantees that the minimization problem in stage 1 is bounded and there exists an 

optimal solution.   

Proof of Proposition 10. (a) We have (21) ≤ (22) because both   1 mn
j ij ij

i

F l d x
 

 
 
  and mn

j ij
i

F x
 
 
 
  

have values between 0 and 1 where Fj(ꞏ) denotes the cumulative distribution function of random demand 

jD .    mn mn
i i K K
 

 follows from (21) ≤ (22). Since both  mn
i K


 and  mn
i K


 are non-positive, we 

have    mn mn
i i K K
 

. 

(b) The proof follows from part (a). The value of (20) reaches zero faster than the value of (9) as Ki 

increases. This leads to 2* *S D
i i

i i

K K  .  

Development of Lemma A1 and Corollary A5: 

We next examine the impact of risk aversion under demand uncertainty in the setting where shipment 

decisions are made before observing the customer demand. In what follows, we show that our main 

finding pertaining to the decrease in total inventory commitment with risk aversion continues to hold 

under demand uncertainty where random demand is revealed after shipment decisions are made. 

Moreover, we show that one of the three optimality conditions that led to this finding (in Section 5.3) is 

always satisfied in this new setting. 

In our earlier analysis, Proposition 6 has established that the firm’s first-stage stocking decisions can 

be decreasing with increasing risk aversion. This proposition has relied on three conditions. We retain 

Condition (C1) in the same way, however, we adjust Condition (C2) in order to accommodate the revised 

SaR constraint in (16). Recall that the original form of Condition (C2) in (10) accounts for the cumulative 

demand during broad-impact and narrow-impact disruptions. We revise this condition using the random 

variable mn
j  describing the cumulative random demand during the disruption with random length at the 

disrupted FC j. Let mn
j  represent the α-percentile (corresponding to the right tale of the distribution) of 
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random cumulative demand during disruption. The firm is concerned about late deliveries when the 

cumulative demand exceeds the α-percentile. We describe the revised condition with (C2′′) and express it 

as follows: 

  (C2′′):  4 4 1 2 3
1 2 1 2 3, ,H H L L L
                

where ε is a small positive infinitesimal quantity representing the switch from risk-neutral setting to risk-

averse setting. Similar to the earlier analysis, Condition (C2′′) makes two statements. First, it guarantees 

that the SaR constraint in (16) is never violated for narrow-impact disruptions where (m, n)  {(L, 1), (L, 

2), (L, 3)}. Second, it ensures that, when risk aversion is incorporated into the decision making process, 

the risk-neutral solution defined in Condition (C1) marginally violates the SaR constraint in (16) during 

broad-impact disruption (m, n) = (H, 4), halting operations at both FC 1 and FC 2. In this case, the only 

viable action to satisfy (16) for (m, n) = (H, 4) is to increase inventory at the distant facility FC 3. 

We next revise Condition (C3) to account for this new setting where random demand is realized after 

delivery decisions are made. The revised Condition (C3′′) is as follows: 

(C3′′): |pL2γ1
L2(K1

N, K2
N, K3

A) + pL3γ1
L3(K1

N, K2
N, K3

A)| ≤ cK, 

|pL1γ2
L1(K1

N, K2
N, K3

A) + pL3γ2
L3(K1

N, K2
N, K3

A)| ≤ cK  

where K3
A denotes the stocking decision in FC 3 satisfying (16) for (m, n) = (H, 4). The following lemma 

shows that the revised Condition (C3′′) always holds in this setting. 

Lemma A1. |pL2γ1
L2(K1

N, K2
N, K3

A) + pL3γ1
L3(K1

N, K2
N, K3

A)| ≤ cK, and |pL1γ2
L1(K1

N, K2
N, K3

A) + pL3γ2
L3(K1

N, 

K2
N, K3

A)| ≤ cK. 

Proof of Lemma A1. Due to the continuous functional form of  mn
i K


, the risk neutral solution 

provided in Condition (C1) satisfies the following: 

|pL2γ1
L2(K1

N, K2
N, 0) + pL3γ1

L3(K1
N, K2

N, 0)| = cK, 

|pL1γ2
L1(K1

N, K2
N, 0) + pL3γ2

L3(K1
N, K2

N, 0)| = cK. 

Since  mn
i K


 is non-decreasing in K


 and non-positive, increasing the value of K3 from 0 to K3
A leads to 

the following: 

|pL2γ1
L2(K1

N, K2
N, K3

A) + pL3γ1
L3(K1

N, K2
N, K3

A)| ≤ cK, 

|pL1γ2
L1(K1

N, K2
N, K3

A) + pL3γ2
L3(K1

N, K2
N, K3

A)| ≤ cK 

which satisfies Condition (C3′′).  

The following corollary confirms that our earlier finding where the first-stage inventory commitment 

can be decreasing under risk aversion continues to hold under the setting with demand being uncertain at 

the time of delivery decisions. It is important to note that we do not need to specify Condition (C3′′) in the 

following corollary because this condition always holds under this demand uncertainty setting. As a 
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result, Corollary A5 requires fewer conditions than Proposition 6 and Corollary A2. This indicates that 

our earlier finding would become more pronounced if demand is uncertain at the time of delivery 

decisions.  

Corollary A5 (to Proposition 6 and Corollary A2). Suppose l(min{d31, d32}) < 1. Let (C1) and (C2′′) 

hold. The total inventory commitment under risk aversion is smaller than the total risk neutral inventory 

commitment. 

Proof of Corollary A5. The proof follows from the proof of Proposition 6 and Corollary A2 with some 

adjustments. Condition (C1) remains the same. Condition (C2′′) replaces Condition (C2) in Proposition 6 

and Condition (C2′) in Corollary A2. Lemma A1 states that Condition (C3′′) (counterpart of Condition 

(C3) in Proposition 6 and Condition (C3′) in Corollary A2) always holds, thus, it is not needed as a 

requirement in Corollary A5.   


