
  

 

 

 
Increasing the Supply of Health Products in Underserved Regions 

 
 

 

 

 

 

Burak Kazaz 

bkazaz@syr.edu 

Whitman School of Management 

Syracuse University 

Syracuse, NY 13244 

 

 

Scott Webster* 

scott.webster@asu.edu  

W.P. Carey School of Business 

Arizona State University 

Tempe, AZ 85287 

 

 

Prashant Yadav 

 prashant.yadav@insead.edu 

Technology and Operations Management, INSEAD, Boulevard Constance, Fontainebleau, France 

Center for Global Development, 2055 L Street Washington DC 

Global Health and Social Medicine, Harvard Medical School, Boston, MA 

 

 

 

September 28, 2023 

 

 

* Corresponding author

mailto:bkazaz@syr.edu
mailto:scott.webster@asu.edu
mailto:prashant.yadav@insead.edu


 

1 
 

Increasing the Supply of Health Products in Underserved Regions 

 
 

We study mechanisms that encourage manufacturers of health products to build production and 

distribution capacity. This is important for low- and middle-income country (LMIC) markets where 

ability to pay is lower and demand risks are greater. Development finance institutions and philanthropies 

are beginning to utilize new instruments to incentivize manufacturers to build production/distribution 

capacity for LMIC markets. The goal of this paper is to understand the effectiveness of such mechanisms 

in different settings. 

 

We examine four instruments: (1) subsidy proportional to unit sales (sales subsidy), (2) subsidy 

proportional to unit capacity (variable-capacity subsidy), (3) subsidy proportional to total capacity 

investment (total-capacity subsidy), (4) a minimum volume guarantee. We analyze incentivized capacity 

as a function of social-investor budget for each instrument. We show how our framework can be used to 

identify a social investor’s preferred instrument given relevant parameter estimates, and we provide 

insight into the type of settings where a particular instrument dominates. A sales subsidy dominates when 

ability to pay is very low; a total-capacity subsidy dominates when ability to pay is low. Outside of these 

settings, instrument preference is nuanced, though a sales subsidy is dominated by at least one other 

instrument. When ability to pay is moderate, a variable-capacity subsidy tends to be preferred under high 

variable-capacity cost and high budget, a volume guarantee tends to be preferred under low variable-

capacity cost and high budget, and a total-capacity subsidy tends to be preferred under low budget.  
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1.  Introduction 

This paper examines mechanisms to encourage manufacturers of global health products to build produc-

tion capacity in order to treat various diseases. We study the impact of alternative actions by a social in-

vestor that are intended to incentivize a manufacturer to invest in capacity for distribution to under-served 

markets. A social investor is defined as an investor who uses market-like instruments to achieve social 

impact returns from their investments. Examples of social investors include governments of developed 

nations, development finance institutions (e.g., International Finance Corporation, the US DFC, and the 

European Development Finance Institutions), and philanthropic foundations, (e.g., Bill and Melinda 

Gates Foundation, Children’s Investment Fund Foundation). Development finance institutions and philan-

thropic foundations are increasingly using incentivizing instruments, in addition to grants, to meet their 

social/philanthropic objectives (Kania et al. 2015).   

 Our focus is on existing health products with known efficacy but for which the manufacturer has not 

invested in production/distribution capacity to serve those in low- and middle-income country (LMIC) 

markets (e.g., Zambia, Tanzania, Kenya, Senegal, South Africa). One reason for the lack of investment to 



 

2 
 

serve LMIC is low ability to pay,1 e.g., the price-volume relationship is too low to recover the manufac-

turer’s costs. In developed-country markets, such as the US, EU and Japan, gross margins on most health 

products are high. It is often argued that this high profit margin is a sufficient incentive for manufacturers 

to take on these risks and invest in capacity that is optimal for society/patients (at least most times) in de-

veloped-country markets, but the same argument cannot be made for LMIC markets. Thus, there is a need 

to examine incentives to build production/distribution capacity investments specifically for LMIC mar-

kets. 

 Another factor that can contribute to the lack of investment to serve LMIC markets is higher demand 

risk. LMIC markets generally exhibit higher uncertainty in demand from the manufacturer’s perspective 

compared to developed-country markets for a number of reasons (Kraiselburd and Yadav 2013): (1) his-

torical data on consumption is limited; (2) the data for disease epidemiology is limited and unreliable; (3) 

funding for health products for some LMIC markets come primarily from external donors (e.g., Global 

Fund for HIV/AIDS, TB & Malaria, USAID, country payers) with consequent uncertainty in purchase 

volume (Natarajan and Swaminathan 2014, Rashkova et al. 2017); (4) there is a lack of transparency in 

processes used by LMIC governments to select reimbursement lists.  

 Mitigating some of the additional risks is important for improving access to health products in all 

markets. Collecting better epidemiological data has the potential for reducing demand uncertainty. Some 

of these activities have already been initiated with financing from organizations such as Unitaid, World 

Bank, USAID and the Gates Foundation. Aggregating these risks via pooled procurement is another idea 

that has been implemented by The Global Fund, the Global Drug Facility and USAID’s Global Health 

Programs (Dubois et al. 2019). However, not all this risk can be mitigated or pooled. Because of the diffi-

culty in estimating the intrinsic demand with limited data, payers and manufacturers may have heteroge-

neous beliefs about demand. In many cases, global donors have better knowledge of intrinsic demand and 

funding commitments for the disease by country governments (Kraiselburd and Yadav 2013). 

In some cases, global donors have a higher tolerance for risk than manufacturers, especially smaller 

manufacturers. Organizations such as the Bill and Melinda Gates Foundation, Unitaid, UK Foreign and 

Commonwealth Office (FCDO), CIFF, and British International Investment (BII) have started utilizing 

risk sharing instruments to incentivize larger investments in capacity to serve LMICs. One specific exam-

ple is the Bill and Melinda Gates Foundation. With an over $50B endowment the Gates Foundation can 

take greater risks than a small- or medium-sized health product manufacturer (Bank 2016a). In addition to 

grants and product-specific subsidies, organizations such as the Gates Foundation, IFC, and US-DFC can 

offer concessional loans (i.e., low-interest loans) to incentivize a health product manufacturer to invest in 

 
1 The cost of the health product is borne by end consumers and/or country governments (e.g., government may make 

the product available to its population at a reduced price). 
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capacity. They can also offer purchase-volume guarantees to share some of the risks of the manufacturer 

(Bank 2016a, 2016b). Such mechanisms shift the risk-return tradeoff curve of the manufacturer by either 

directly lowering the manufacturer’s cost of capital or by decreasing their demand uncertainty risk, and 

thus, resulting in a higher capacity investment. The result could be lower prices and higher manufacturing 

capacity for LMIC markets.  

Typical risk-sharing approaches analyzed in the operations management literature involve agreements 

such as quantity-flexibility contracts, revenue-sharing contracts, and buyback contracts. This body of lit-

erature examines the value of different risk-sharing contracts to one or both parties in a seller-buyer sup-

ply chain (e.g., manufacturer selling to a retailer). The insights from this body of literature do not directly 

translate to our setting for several reasons. First, we take the perspective of a third party interested in in-

fluencing a seller-buyer supply chain. The third party is a social investor that wishes to incentivize invest-

ment by a health product manufacturer (seller) to serve LMIC governments/residents (buyers). Second, 

the social investor’s objective is to maximize social welfare. The literature on risk-sharing contracts gen-

erally focuses on seller and buyer profit (surplus). For health products, there can be a large benefit exter-

nality, which is included in social welfare but not in seller-buyer surplus. 

In this paper, we study the impact of four types of instruments that a social investor may pursue to 

incentivize a health product manufacturer to invest in capacity at a desirable level:  

(1) Subsidy proportional to sales volume, also known as (aka) sales subsidy 

(2) Subsidy proportional to capacity volume, aka variable-capacity subsidy 

(3) Subsidy proportional to total capacity investment, aka total-capacity subsidy (or concessional loan) 

(4) Minimum volume guarantee 

These four instruments reflect the set of viable alternatives that have been explored by agencies such as 

the Gates Foundation, Unitaid, CIFF, BII, and FCDO. The first three instruments provide a subsidy to the 

manufacturer and help address the barrier of investment of low ability to pay in LMIC markets. The last 

instrument shifts some of the risk of uncertain demand to the social investor and helps address the barrier 

to investment due to demand risk. We want to understand the relative impact of these instruments under 

differing cost and information structures. The outcome of this research provides a framework that can be 

used to guide the choice of instruments to achieve development objectives. This work has immediate ap-

plications in practice and policy work and advances the field of supply chain finance in the global health 

sector. 

We present and analyze a model that provides conditions under which each instrument is likely to be 

preferred. These conditions are intertwined and nuanced as they incorporate characteristics of the market, 

manufacturing costs, and their interactions to incentivize investment in capacity. Our main findings fol-
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low. First, when ability to pay is very low, a sales subsidy is the only viable instrument to incentivize in-

vestment in capacity. In such a setting, which can arise in LMIC markets, the manufacturer’s participation 

constraint that stems from the fixed cost of building capacity is binding for all other instruments; an out-

put-unit subsidy is necessary to satisfy the participation constraint. The remaining three points apply un-

der the assumption that ability to pay is high enough for other instruments to be viable. 

Second, an input-unit subsidy (e.g., variable-capacity subsidy) does not necessarily dominate an out-

put-unit subsidy (e.g., sales subsidy). If there is no participation constraint (e.g., no fixed cost), then our 

findings align with a finding in the literature: a variable-capacity subsidy incentivizes greater investment 

in capacity for a given budget than a sales subsidy; the leverage from input-unit subsidy is higher because 

the subsidy affects both overage and underage cost whereas an output-unit subsidy only affects underage 

cost. However, in the presence of a participation constraint, the “extra cost” of a sales subsidy becomes an 

advantage; it can cover the manufacturer’s fixed cost, thereby incentivizing investment that would not oc-

cur under a variable-capacity subsidy (e.g., when budget is low). When the budget is high enough that a 

variable-capacity subsidy becomes viable (i.e., participation constraint is no longer binding), then the var-

iable-capacity subsidy dominates the sales subsidy.  

Third, a total-capacity subsidy and a sales subsidy exhibit a structural similarity that manifests in two 

fundamental properties: (1) the minimum budget that incentivizes investment in capacity (threshold 

budget) is the same for both instruments, (2) at any budget above the threshold, the total-capacity subsidy 

yields higher investment in capacity than a sales subsidy. The total-capacity subsidy includes a subsidy on 

input units (greater leverage compared to an output-unit subsidy) as well as a subsidy on fixed cost to ad-

dress the participation constraint. However, the contribution to fixed cost means that a total-capacity sub-

sidy is dominated by a variable-capacity subsidy when the budget is high enough that the participation 

constraint under a variable-capacity subsidy is not binding.  

Fourth, the viability of a volume guarantee is linked to breakeven volume, i.e., fixed cost of capacity 

divided by the contribution margin (including variable cost of capacity). The main managerial conse-

quence is that a volume guarantee is likely to be dominated by another instrument unless ability to pay 

(and consequently, contribution margin) is moderate-to-high.  

 After summarizing relevant literature in the next section, we present and analyze a model for the so-

cial investor and the manufacturer in Section 3. Section 4 describes and analyzes the different instru-

ments for incentivizing investment in capacity. Section 5 presents analysis of illustrates the application of 

our model to three real-world cases. Section 6 summarizes our main findings, with emphasis on implica-

tions for social investors. Derivations and proofs are available in an online appendix. 
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2.  Related Literature 

There is a vast literature that examines the impact of market interventions by government or nongovern-

mental organizations to improve social welfare. Areas of application include agriculture (e.g., Stiglitz 

1987, Tang et al. 2015), clean or efficient energy (e.g., Aldy et al. 2019, Alizamir et al. 2016, Cohen et al. 

2016, Krass et al. 2013, Raz and Ovchinnikov 2015, Yu et al. 2018), medicines (e.g., Arifoğlu et al. 2012, 

Chick et al. 2008, Kazaz et al. 2016, Taylor and Xiao 2014, Park et al. 2018, Martin et al. 2020), and re-

manufacturing (e.g., Atasu and Subramanian 2012, Atasu et al. 2019, Mitra and Webster 2008, Webster 

and Mitra 2007). There is also a wide literature on the timing and the amount of capacity expansion under 

demand uncertainty (e.g., Van Mieghem 2003, Erkoc and Wu 2005, Ozer and Wei 2006, Song et al. 

2020). The models in this literature often exhibit a newsvendor structure, as is the case for the capacity 

investment decision model that we present in Section 3.3.  

We consider four possible instruments to incentivize investment in product/distribution capacity: 

sales subsidy, variable-capacity subsidy, total-capacity subsidy, and volume guarantee. We note that eco-

nomics literature has examined the relative effects of a subsidy on input units (e.g., variable-capacity sub-

sidy) versus a subsidy on output units (e.g., sales subsidy). For example, Parish and McLaren (1982) pro-

vide an analytical treatment and show neither subsidy dominates the other, and Aldy et al. (2019) empiri-

cally find that an output subsidy is more cost-effective for promoting wind energy. Berndt et al. (2007) 

and Kremer et al. (2022) examine advance market commitment (AMC) to vaccines in the form of a mini-

mum price to pay per immunized person; this corresponds to a sales subsidy, which is the focus of the 

AMC literature. This stream of economics literature has not examined the effects of subsidies in a setting 

with risk stemming from demand uncertainty. There are relatively few papers that have considered one or 

more of these interventions under demand risk. In the following, we summarize this literature and clarify 

similarities and differences relative to our work.  

Several earlier publications focused on determining whether input or output subsidies, or their combi-

nation, are beneficial in different settings. Taylor and Xiao (2014) consider the problem of donor seeking 

to maximize the expected unit sales of a malaria medicine (per period) subject to a budget constraint. The 

donor considers two types of retailer subsidies to influence optimal ordering/pricing policies to improve 

social welfare: an input subsidy (per unit purchased by the retailer) and an output subsidy (per unit sold 

by the retailer). The authors show that, while the optimal order quantity is more sensitive to the input sub-

sidy and the optimal retail price of the medicine is more sensitive to the output subsidy, it is optimal to 

only use an input subsidy. The finding relies on the fact that an input subsidy reduces both the cost of un-

derstocking (loss from revenues) and the cost of overstocking (loss from too much purchased). Raz and 

Ovchinnikov (2015) show similar findings in the design of incentives offered by government to maximize 

social welfare of a product in the context of electric vehicles. They consider two types of incentives: (1) 
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subsidy paid to the manufacturer for each unit produced (input subsidy paid to the manufacturer), (2) re-

bate paid to the consumer for each unit purchased (output subsidy paid to the consumer). They show that 

an output subsidy can co-exist with an input subsidy in the optimal solution that maximizes social wel-

fare. Cohen et al. (2016) extend this work by examining the use of a manufacturer cost subsidy and a con-

sumer rebate to increase the adoption of electric vehicles. They focus on understanding the impact of ig-

noring demand uncertainty when setting subsidies and show numerically that neither the input nor output 

subsidy universally dominates the other.  

 The paper most closely related to our work is Martin et al. (2020) who study optimal incentive instru-

ments for increasing the supply of vaccines in developing countries. They study three types of subsidy 

instruments: (1) a subsidy on sales up to a sales volume cap, (2) a capacity-dependent subsidy on sales 

where the per-unit subsidy increases if capacity is above a threshold, (3) a subsidy on sales with an addi-

tional subsidy payment for each unit of unused capacity. The first two instruments are variations of an 

output subsidy, and the third instrument includes both input (payment proportional to capacity) and output 

(payment proportional to sales) subsidies.  

In summary, our study differs from the above publications because we consider two different input 

subsidies and one risk-shifting instrument as well as an output subsidy. In the setting of our study, the 

fixed cost of capacity plays a meaningful role and offers a unique feature that has not been considered in 

the literature. The presence of a fixed cost introduces manufacturer participation constraint. More specifi-

cally, we consider a sales subsidy and two types of capacity subsidies—payment proportional to the varia-

ble cost of capacity (variable-capacity subsidy) and payment proportional to the total cost of capacity (to-

tal-capacity subsidy). To our knowledge, the total-capacity subsidy has not previously been considered 

and becomes relevant because of the manufacturer participation constraint. In addition, we consider a vol-

ume guarantee that shifts demand risk from manufacturer to the social investor and is distinct from classi-

cal input/output subsidy instruments. Finally, we remark that the presence of a manufacturer participation 

constraint leads to nuanced conclusions on instrument preference relative to the literature. For example, 

the general finding from the literature that an input subsidy is preferred over an output subsidy no longer 

holds. This is due to the presence of the manufacturer’s participation constraint. Furthermore, both the 

total-capacity and the volume guarantee instruments offer unique advantages over the traditional input 

and output subsidies in some settings. For example, the total capacity subsidy dominates when ability to 

pay is low, and the volume guarantee is more likely to be preferred under moderate ability to pay when 

variable-capacity cost is low. 

Each of the instruments we study are considered by practitioners. Our objective is to provide insight 

that can help guide the social investor on the choice of instrument. We identify conditions under which 
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each instrument is more cost effective than the others. We focus on the implementation of each instru-

ment in isolation for two reasons. First, our interactions with those who have worked on implementing 

these instruments indicate that the transactional and contractual costs of combined instruments are signifi-

cantly high. These social investors indicate that, unless the benefits of combined instruments are very 

high, pure instruments are more suitable in practice. Second, the simultaneous optimization of parameters 

across multiple instruments adds significant complexity warranting a separate study. Our paper provides 

an important step to this line of research as the study of instrument combinations relies on a keen under-

standing of factors that influence the performance of each instrument. 

3. Social Investor and Manufacturer Models 

The social investor plays the role of a principal seeking to incentivize an agent (manufacturer) to invest in 

production/distribution capacity to serve the LMIC markets. Section 3.1 describes characteristics of the 

problem in practice. The content in this section provides background and context for models presented in 

sections 3.2 and 3.3.  

3.1. Examples from Practice and Problem Characteristics 

Our study draws on interactions with those who have worked on projects to incentivize investment in ca-

pacity to serve LMIC markets, including the Jadelle contraceptive implant, the Hologic viral load test, and 

next generation long-lasting insecticide-treated bed nets. We begin with a brief description of each of 

these examples. Then we summarize the common features that form the basis of our model.2 

 Contraceptive implants have been widely available in developed country markets (e.g., Norplant, the 

first contraceptive implant, became available in 1983). The 2012 price for the Jadelle implant was 

$18/unit, approximately twice the upper limit on the affordable price in LMIC markets. A coalition of so-

cial investors worked with Bayer to incentivize investment in a new production line for the Jadelle im-

plant to serve these markets at a price of $8.50/unit. While subsidy instruments were considered, the 

group provided a volume guarantee of 27 million units to be supplied to 50 LMICs over a six-year period. 

A similar agreement was reached later with Merck, the manufacturer of another implant, Implanon. 

 HIV-AIDS viral load testing is essential for bringing viral load below a threshold at which HIV is no 

longer transmitted; it is a critical step toward achieving the UN goal of eliminating the HIV-AIDS epi-

demic by 2030. The availability of test devices/materials has been limited in many African countries due 

to high cost. CHAI conducted a study of viral load test cost structure and LMIC ability to pay. Through a 

three-year volume guarantee agreement involving CHAI, MedAccess, and supplier Hologic, viral load 

 
2 One of the authors has worked for a nonprofit social investor. Our study draws on a sound understanding of real-

world challenges and approaches for harnessing the private sector to improve health outcomes through strategic in-

vestments. 
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test instruments have been installed throughout African countries. Viral load tests are provided by Ho-

logic at a price of $12/test.  

 Long-lasting insecticide-treated bed nets (LLINs) help prevent the spread of malaria. In 2017, the 

WHO noted growing resistance to pyrethroids, the only WHO-approved insecticide for LLINs, and priori-

tized the development of the next generation LLIN at a low cost (e.g., at a price comparable to the price 

of pyrethroid-LLINs). To incentivize investment, WHO and partners including The Global Fund, Gates 

Foundation, Unitaid, USAID, President’s Malaria Initiative considered paying the successful supplier(s) 

the difference between next generation LLINs and pyrethroid-LLINs as tests/trials take place (ten Brink et 

al. 2018), i.e., a sales subsidy. Development and trials are ongoing. 

 The above examples illustrate characteristics of settings that motivate this research. The social inves-

tor draws on established relationships with LMIC governments/agencies and other resources to determine 

(1) that there is a significant and pressing need for a health product relative to current availability and (2) 

that governments and agencies are open to efforts to increase the supply of the product in their markets. 

The social investor has conducted research to understand the product’s cost structure, the willingness/abil-

ity of country governments to pay for the health product (i.e., upper limit on price), and an estimate of an-

nual volumes consistent with the goal of maximizing social welfare. In practice, the social investor recog-

nizes that volume projections are not precise (e.g., benefit externality, the level of need, and other param-

eters are challenging to estimate). In recognition of this characteristic, our goal is to develop a framework 

that can help a social investor to gain insight into the cost of instruments to incentivize capacity invest-

ment over a range of different volume levels.  

3.2. Capacity Investment from the Social Investor’s Perspective 

The social investor has identified a high priority need for a health product that is insufficiently available 

in LMIC markets, including an estimate of “ideal” annual volumes. In this section, we describe factors 

that a social investor considers when developing volume estimates. We then define a model that specifies 

the micro-level decision process that underlies a social investor’s preferred capacity. We use the model to 

identify an upper limit of incentivized capacity in our numerical illustrations in Section 5.  

Social welfare is the difference between the value of the health product to those in need and the cost 

to provide the health product. Obtaining accurate estimates of health product value, cost structure, and 

market need can be challenging (Levine et al. 2008). However, recent initiatives led by organizations like 

UNITAID, CHAI, and USAID have begun systematically forecasting global demand for certain health 

products, particularly those funded by international agencies. Two sources of cost information are availa-

ble. First, academic production engineers have developed modeling-based estimation methods for both 

fixed and variable production costs (Basu et al. 2008, Hill, 2018). Second, as major social investors like 

the Gates Foundation and MedAccess increasingly use the instruments discussed in this paper, they have 
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started funding specialized organizations like CHAI to estimate production cost curves. The societal value 

resulting from the use of health products is estimated by global Health Technology Assessment (HTA) 

agencies for various new health products (Tantivess et al. 2017). Obtaining accurate estimates of need, 

costs, and health system/societal value is much more challenging for products that are either new and in-

novative or when financing and purchasing are carried out directly by country governments rather than 

international agencies. 

The above discussion summarizes considerations that underlie the social investor’s volume projec-

tions that we formalize through a model. We identify socially optimal capacity to serve needs over a finite 

period of time that we refer to as the investment horizon (e.g., several years). Details on the duration and 

meaning of the investment horizon appear in Section 4; for now, we simply note that it is the relevant du-

ration for evaluating a capital investment under consideration. 

The number of individuals that benefit from use of the health product during the period is uncertain. 

The social investor’s demand forecast is , which is the expected value of uncertain demand d . Let cv 

denote the marginal cost of production, ck denote the marginal cost of capacity, cf denote the fixed cost of 

capacity, and  denote the social value per unit of the health product that includes externality benefit 

where  > cv + ck (if the inequality did not hold, then the social investor would not be interested in incen-

tivizing investment in capacity). The social welfare from capacity decision x during the period is the dif-

ference between value and cost:  

  ( )x = ( )  min ,v k fE c d x c x c − − −
 

. 

Note that the social welfare function has a newsvendor structure, which is evident in the following char-

acterizations of socially optimal capacity, denoted 
*
1x .  

Proposition 1. Socially optimal capacity 
*
1x  satisfies ( )*

1Pr x d = ( )/k vc c − .  

(The proof of Proposition 1 is straightforward and is omitted.) In any realistic setting, ( )*
1x > 0; other-

wise, the social investor is not interested in incentivizing the manufacturer to invest in capacity.  

3.3. Capacity Investment from the Manufacturer’s Perspective 

The manufacturing firm does not currently supply the health product in LMIC markets. The focus of our 

model is the level of capacity the manufacturer will build as a function of incentives provided by the so-

cial investor. We present a base model of the manufacturer’s decision process in this section, then aug-

ment this model to accommodate alternative incentive instruments in Section 4. 

For capital investment decisions, firms evaluate the payoff from the investment’s financial flows over 

a fixed period. As noted in the previous section, we refer to this length of time as the investment horizon. 
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After building capacity (or retrofitting an existing facility), the manufacturer produces according to ob-

served demand over the investment horizon up to available capacity. Figure 1 presents the timeline of de-

cisions and events in our model. 

 
Figure 1. Timing of events. 

The investment in capacity takes place at time zero. We denote the present value cost per unit of ca-

pacity by ck and the fixed cost associated with building capacity by cf. Thus, at the beginning of the in-

vestment horizon, the cost to build capacity capable of producing and distributing up to x units during the 

investment horizon is then ckx + cf. We assume ck > 0 (i.e., cost is increasing in capacity, which is realistic 

and avoids the relatively trivial analysis that arises when ck = 0) and cf > 0. The marginal cost of capacity 

has a range of possible interpretations that depend on the specific setting. Recall the examples in Section 

3.1. For the Jadelle contraceptive implant, ck is the cost of building a new production line at an existing 

plant; for Hologic, ck is the cost of building and installing test machines in an LMIC market; for bed nets, 

ck is the cost of retrofitting existing production equipment and processes to accommodate a new insecti-

cide. 

d = uncertain demand during investment horizon; pdf f, cdf F and complement F̅ = 1 – F, mean , variance 2 

p = unit price paid by LMIC markets (end of investment horizon) 

cv = manufacturer variable cost of production (end of investment horizon) 

i2 = manufacturer cost of capital over investment horizon 

i1 = social investor loan rate over investment horizon  

kc  = manufacturer cost per unit of capacity (start of investment horizon) 

ck = ( )21 ki c+ = manufacturer cost per unit of capacity (end of investment horizon) 

fc = manufacturer fixed cost to build capacity (start of investment horizon) 

cf = ( )21 fi c+ = manufacturer cost to invest in capacity (end of investment horizon) 

 = social value per unit of the health product  

x = production/distribution capacity over investment horizon 

Table 1. Model notation. 

 

We express the firm’s cost and revenue parameters at the end of the investment horizon (i.e., future 

value), and eliminate the underline on the cost parameters to denote the end-of-horizon values inflated by 

the manufacturer’s cost of capital i2, i.e., ck = ( )21 ki c+ and cf = ( )21 fi c+ . We approximate the dynamics 

of financial flows over the investment horizon by assuming that random demand is realized at the end of 
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the horizon. The manufacturer produces the minimum of demand and capacity at unit cost cv. The upper 

limit of LMIC ability to pay is p. The model notation is summarized in Table 1. 

To streamline notation, we normalize the residual value of the capacity investment at the end of the 

horizon to zero.3 Therefore, the manufacturer’s expected profit as a function of capacity x is  

( )x = ( )  min ,v k fp c E d x c x c− − − .                (1) 

Let 
o
2x = ( ) 

0

arg max
x

x


. If p – cv ≤ 0, then ( )x is decreasing in x and thus
o
2x = 0; otherwise, it follows 

from Proposition 1 that 
o
2x  satisfies  

( )o
2F x = ( ) min / ,1k vc p c− .                   (2) 

Thus, the manufacturer’s capacity decision and profit are  

*
2x =

( )

( )

o
2

o o
2 2

0,    if 0

,  if 0

x

x x





 




                     (3) 

* =
( )

( ) ( )

o
2

o o
2 2

0,          if 0

,  if 0

x

x x



 

 




 .                     (4) 

Expression (3) reflects two possibilities. If ( )o
2x ≤ 0, then the variable profit at optimal capacity does not 

cover the fixed cost. In this case, the manufacturer has no incentive to invest in capacity (i.e., the manu-

facturer’s participation constraint, (x) > 0, is not satisfied). Alternatively, the manufacturer earns positive 

expected profit from building capacity (i.e., ( )o
2x > 0), but the level is insufficient from the social inves-

tor’s perspective. Both instances arise in practice. Referring to the examples in Section 3.1, ( )o
2x ≤ 0 for 

Jadelle and ( )o
2x > 0 for Hologic and bed nets though investment in capacity is well below need from the 

social investors’ perspective (see also Kazaz et al. 2021 for an underinvestment example).  

Throughout the paper, we assume  

*
2x <

*
1x .                            (5) 

If (5) did not hold, then the social investor is not interested in incentivizing the manufacturer to invest in 

capacity. 

  

 
3 Parameter ck can be interpreted as net of end-of-horizon salvage value, e.g., ck =  – s/(1 + i2) where  is the mar-

ginal cost of capacity incurred at time zero and s is the expected salvage value per unit of capacity at the end of the 

investment horizon. 
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4. Incentivizing Investment in Capacity 

We consider four canonical instruments for incentivizing manufacturer investment in capacity.4 The first 

two subsections describe the instruments. §4.1 describes two instruments from the literature and clarifies 

what is similar and what is new when applied in our setting. §4.2 describes two new instruments and pre-

sents properties of all four instruments. This is followed by two subsections, which explain a relationship 

between one canonical instrument and a generalization that arises in practice (§4.3), and present numeri-

cal results that illustrate regions of instrument dominance (§4.4). 

4.1. Output-Unit and Input-Unit Instruments 

As noted in Section 2, previous literature has studied the newsvendor order-quantity decision under a 

sales subsidy (payment to the newsvendor for each unit sold, or output-unit subsidy) and a purchase sub-

sidy (payment to the newsvendor for each unit purchased, or input-unit subsidy), and find that a purchase 

subsidy dominates a sales subsidy. These instruments can be adapted to our setting where the decision is 

capacity instead of order quantity subject to a participation constraint (due to the presence of a fixed cost). 

Manufacturer expected profit as a function of capacity x and nonnegative instrument parameter y can be 

expressed as  

( ),s x y = ( )  min ,v k fp c y E d x c x c− + − −  

( ),k x y = ( )   ( )min , 1v k fp c E d x y c x c− − − −  

Instrument s is a sales subsidy; the manufacturer is paid y per unit of sales (output-unit subsidy). Instru-

ment k is a variable-capacity subsidy; the manufacturer is paid fraction y of the variable cost of capacity 

(output-unit subsidy).5  

 The introduction of the manufacturer participation constraint that arises in our setting due to the fixed 

cost of capacity leads to more nuanced conclusions on instrument dominance. In the following, we first 

present results that characterize optimal decisions and profit given that the participation constraint is ig-

nored. To simplify notation and focus on settings most relevant for practice, we assume that the social in-

vestor is interested in levels of capacity that are greater than the minimum possible demand, i.e., letting 

( )ˆ
jx y  denote incentivized capacity as a function of y for instrument j, y satisfies 

( )ˆ
jx y >  min d                       (6) 

 
4 These are instruments identified as the most critical set of alternatives by the Strategic Investment Fund team at the 

Gates Foundation. 
5 The manufacturer profit function under instrument k can be equivalently expressed as a payment on each unit of 

capacity (e.g., (ck – y)x in place of (1 – y)ckx). We use y as a fraction because it is useful for comparative analysis of 

the instruments.  
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for all instruments (this assumption eliminates the need for a min operator in expressions for optimal deci-

sions).  

Proposition 2 (manufacturer profit at incentivized capacity). (i) Ignoring the manufacturer’s partici-

pation constraint, manufacturer’s capacity decisions under each instrument are 

( )ˆ
sx y = ( ) 

0

arg max ,s
x

x y


=
1 k

v

c
F

p c y

−  
 

− + 
if p – cv + y > 0; otherwise ( )ˆ

sx y  = 0       (7) 

( )ˆ
kx y = ( ) 

0

arg max ,k
x

x y


=
( )1 1 k

v

y c
F

p c

−  − 
 

− 
 if p – cv > 0; otherwise ( )ˆ

kx y  = 0.        (8) 

(ii) Ignoring the manufacturer’s participation constraint, manufacturer’s profits as a function of optimal 

capacity decision x >
o
2x and instrument parameter functions are  

  ( )s x = ( )( ),s sx y x  =
( )

( )|k
f

c
E d d x F x c

F x

 
  −    

 
 

( )sy x =
( )

( )k
v

c
p c

F x
− −  

( )k x = ( )( ),k kx y x = ( ) ( )|v fp c E d d x F x c −  −   if p – cv > 0; otherwise ( )k x =     (9) 

( )ky x = ( )1 v

k

p c
F x

c

 −
−  

 
 if p – cv > 0; otherwise ( )ky x =           (10) 

As shown in (8) – (10), instrument k is only viable if p – cv > 0, i.e., no subsidy on capacity will incentiv-

ize investment in capacity if the manufacturer cannot make a positive profit on each unit sold. 

With the above notation and results, we are now positioned to characterize investment in capacity for 

a given budget under each instrument while accounting for participation constraints. In other words, for a 

given cost to the social investor, what will be the manufacturer's capacity decision under each instrument? 

 Recall that incentivized capacity x >
*
2x   under instrument j is only achievable if j(x) > 0 (i.e., the 

participation constraint must be satisfied); if j(x) ≤ 0, then the manufacturer will not invest in capacity. 

Also recall that 
o
2x  is the manufacturer’s optimal investment in capacity (with no instrument) if the partic-

ipation constraint is ignored. For instrument j, let  

jb
=

( )

( )( ) ( )( ) ( )

o
2

1 1 o
2

0,                                       if 0

0 0 ,  if 0j j j

x

x



    − −

 


− 

 ,            (11) 

which is the minimum budget for which instrument j incentivizes investment in capacity, or budget 

threshold. We briefly explain the basis and meaning of (11). First, suppose that ( )o
2x > 0. This means 
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that the manufacturer’s participation constraint (without an instrument) is not binding, i.e., the manufac-

turer invests in capacity
*
2x =

o
2x > 0 without any subsidy. Thus, the budget threshold is zero. However, if 

( )o
2 0x  , then the manufacturer will not invest without a subsidy. At x = jx ≔ ( )1 0j − , manufacturer 

profit under instrument j is zero. Thus, instrument j is only viable for incentivizing capacity x > jx
. The 

corresponding cost to the social investor is the difference in manufacturer profits with, and without, the 

instrument,  

( )jb x = ( ) ( )j x x − for  x > jx
,6               (12) 

which yields budget threshold jb
= ( ) ( )j j jx x  − . Inverting (12) yields incentivized capacity for a 

given budget b, i.e., ( )jx b = ( )1
jb b−

for b > jb
.  

Proposition 3 (instrument s versus k). (i) Suppose p – cv – cf/ ≤ 0. Then  

0 < sb
< kb

= ∞ 

0 = ( )kx b < ( )sx b  for all b > sb
. 

(ii) Suppose p – cv – cf/ > 0 and ( )o
2x ≤ 0. Then  

0 < sb
< kb

< ∞ 

0 = ( )kx b < ( )sx b  for all b ∈ ( ,s kb b  
  

0 < ( )sx b < ( )kx b  for all b > kb
. 

(iii) Suppose p – cv – cf/ > 0 and ( )o
2x > 0. Then 

0 = sb
= kb

 

0 <
*
2x < ( )sx b < ( )kx b  for all b > 0. 

 We offer several observations related to Proposition 3. First, suppose that cf = 0, i.e., there is no par-

ticipation constraint. Then, assuming gross margin is positive (i.e., p – cv > 0), we see that a variable-ca-

pacity subsidy dominates a sales subsidy; if p – cv ≤ 0, then s dominates k because k is not viable. This 

result is consistent with findings in the literature.  

 

6 We note that the social investor cost function for instrument j is only defined for x satisfying j(x) > 0 and x >
*
2x : 

bj(x) = j(x) – (x) for x > jx
:= min{x : j(x) ≥ 0}, e.g., if x ≤

*
2x , then bj(x) = 0. Note that bj(x) is strictly increasing 

in x. Therefore, the function can be inverted to obtain incentivized capacity as a function of budget, xj(b) = bj
-1(b).   
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If p – cv > 0, then the relationship among the two instruments becomes mixed in the presence of par-

ticipation constraints (due to a fixed cost of the quantity decision). In particular, the sales subsidy can 

dominate the variable-capacity subsidy at low budget levels (e.g., budget levels where k is not viable). 

The intuition is as follows. As noted earlier, in the absence of participation constraints, the manufacturer’s 

capacity decision is more sensitive to an input-unit subsidy than an output-unit subsidy; an input-unit sub-

sidy reduces both the underage and overage cost in the newsvendor model whereas an output-unit subsidy 

only reduces underage cost. The main consequence from a social investor’s perspective is the lower lever-

age from an output-unit subsidy means “leaving money on the table” for a given capacity compared to the 

input-unit subsidy. However, in the presence of participation constraints, the apparent negative of extra 

cost can become a positive because it can cover the manufacturer’s fixed cost thereby incentivizing manu-

facturer participation at a lower budget than what is possible via instrument k. 

4.2. Total-Capacity and Volume Guarantee Instruments 

In this section, we first describe two new instruments. Then we present results that characterize settings 

under which a particular instrument is preferred.  

 ( ),l x y = ( )   ( )( )min , 1v k fp c E d x y c x c− − − +            (13) 

( ),q x y = ( )   min max , ,v k fp c E d y x c x c− − − .            (14) 

Instrument l is a total-capacity subsidy; the manufacturer is paid fraction y of the total cost of capacity. 

This instrument captures the structure of manufacturer profit under a concessional loan. We present de-

tails of a concessional loan in Section 4.3. If cf = 0, then instruments k and l are equivalent. We assume cf 

> 0 throughout the remainder of the paper.7 Instrument q is a volume-guarantee subsidy because the man-

ufacturer is assured sales volume of at least y units; given realized demand d, the manufacturer is paid (p 

– cv)(y – min{d, x})+. Instrument q is a risk-shifting instrument—it shifts risk associated with low demand 

(and consequent low profit) from the manufacturer to the social investor. Note that if y = 0, then the profit 

functions reduce to (1), i.e., j(x, 0) = (x) for j ∈ {s, k, l, q}.  

Proposition 4 extends Proposition 2 for instruments l and q. Let  

  ( )
max ,d y

F x =  ( )Pr max ,d y x . 

Proposition 4 (manufacturer profit at incentivized capacity). (i) Ignoring the manufacturer’s partici-

pation constraint, manufacturer’s capacity decisions under instruments l and q are 

( )ˆ
lx y = ( ) 

0

arg max ,l
x

x y


=
( )1 1 k

v

y c
F

p c

−  − 
 

− 
 if p – cv > 0; otherwise ( )ˆ

lx y = 0    (15) 

 
7 The consequence of this assumption is that some strict inequalities in our results become non-strict due to the 

equivalence of instruments k and l when cf  = 0. 
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( )ˆ
qx y = ( ) 

0

arg max ,q
x

x y


=
 

1

max ,

k

d y
v

c
F

p c

−  
 

− 
 if p – cv – ck > 0; otherwise ( )ˆ

qx y = 0.   (16) 

(ii) Ignoring the manufacturer’s participation constraint, manufacturer’s profits as a function of optimal 

capacity decision x >
o
2x and instrument parameter functions are  

  ( )l x = ( ) ( )
( )

( )
|

/
v f

k v

F x
p c E d d x F x c

c p c

 
 −  −     − 

 if p – cv > 0; otherwise ( )k x =  

( )ly x = ( )1 v

k

p c
F x

c

 −
−  

 
 if p – cv > 0; otherwise ( )ly x =  

( )q x = ( )v k fp c c x c− − −  if p – cv – ck > 0; otherwise ( )q x =  

( )qy x = x if p – cv – ck > 0; otherwise ( )qy x = . 

 From ( )o
2F x = min{ck/(p – cv), 1}, it follows that ( )F x < ck/(p – cv) for x >

o
2x . Therefore, given that p 

– cv > 0, it follows from propositions 2 and 4 that 

( )k x < ( )l x < ( )s x for all x >
o
2x .               (17) 

As we clarify later, the inequality between q(x) and j(x) for j ∈ {s, k, l} can be in either direction.  

Proposition 5 characterizes relative differences in incentivized capacity among the four instruments in 

a setting where the manufacturer will not invest in capacity without an instrument, i.e., ( )o
2x ≤ 0, which 

implies 
*
2x  = 0. Proposition 6 presents result for the opposite setting, i.e., ( )o

2x > 0 and
*
2x  =

o
2x > 0.  

Proposition 5 (no capacity investment without an instrument). (i) Suppose p – cv ≤ 0. Then  

0 < sb
< kb

= lb
= qb

= ∞ 

0 = ( )kx b = ( )lx b = ( )qx b < ( )sx b  for all b > sb
. 

(ii) Suppose p – cv – max{ck, cf/} ≤ 0 < p – cv. Then  

0 < sb
= lb

< kb
= qb

= ∞ 

0 = ( )kx b = ( )qx b < ( )sx b < ( )lx b  for all b > sb
= lb

. 

(iii) Suppose p – cv – ck ≤ 0 < p – cv – cf/. Then  

0 < sb
= lb

< kb
< qb

= ∞ 

0 = ( )kx b = ( )qx b < ( )sx b < ( )lx b  for all b ∈ ( ,s kb b  
 = ( ,l kb b  

  

0 = ( )qx b < ( )sx b < ( )lx b < ( )kx b  for all b > kb
. 
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(iv) Suppose p – cv – cf/ ≤ 0 < p – cv – ck. Then  

0 < sb
= lb

< ∞ and 0 < qb
< kb

= ∞ 

0 = ( )kx b  for all b 

0 < ( )sx b < ( )lx b  for all b > sb
= lb

 

(v) Suppose 0 < p – cv – max{ck, cf/}. Then  

0 < sb
= lb

< kb
< ∞ and 0 < qb

< ∞ 

0 = ( )kx b = ( )qx b < ( )sx b < ( )lx b  for all b ∈ ( ,s kb b  
 = ( ,l kb b  

  

0 < ( )sx b < ( )lx b < ( )kx b  for all b > kb
. 

Proposition 6 (capacity investment occurs without an instrument).  

  0 < p – cv – max{ck, cf/} 

  0 = sb
= kb

= lb
= qb

 

0 <
*
2x  < ( )qx b < ( )sx b < ( )sx b < ( )kx b  for all 0 < b ≤ ( ) ( )*

2vp c E x d
+

− −  

0 <
*
2x < ( )sx b < ( )lx b < ( )kx b  for all b > 0. 

 Let us summarize the main conclusions from the propositions and the underlying intuition. If the 

manufacturer is willing to invest in capacity without a subsidy instrument, then instrument k consistently 

dominates instruments s and l (Proposition 3). Furthermore, a volume guarantee at capacity
*
2x  > 0 incurs 

an expected cost to the social investor of ( ) ( )*
2vp c E x d

+

− − , which implies ( )qx b = 
*
2x  for all b ≤

( ) ( )*
2vp c E x d

+

− − , e.g., a necessary condition for ( )qx b > ( )kx b  is b > ( ) ( )*
2vp c E x d

+

− − .  

As noted above, the dominance of an input subsidy over an output subsidy derives from a difference 

in leverage within a newsvendor structure. An increase in the price subsidy increases the shortage cost per 

unit, p – cv – ck + y, whereas an increase in the variable cost subsidy increases the shortage cost per unit, p 

– cv – (1 – y)ck and simultaneously decreases the excess cost per unit, (1 – y)ck. Instrument k dominates 

instrument l in this setting because decreasing the fixed cost (via l) does not affect the marginal value of 

capacity for the manufacturer, e.g., compare (8) with (15).  

 The picture notably changes in settings where the manufacturer is not willing to invest in capacity 

without a subsidy. In this setting, instrument s is the only viable instrument when ability to pay p does not 

exceed the variable production cost cv. As ability to pay net of variable production cost increases above 

zero but remains below the variable capacity cost (ck) and below the fixed cost of capacity per unit of 
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forecasted demand (cf/), then instrument l is viable and dominates instrument s. The dominance of in-

strument l relative to s derives from the greater leverage of a subsidy on an input unit over an output unit, 

as discussed above. Interestingly, while both instruments l and s are not viable at low budget levels, the 

instruments share the same budget threshold. This is due to the structural similarity of profit under the 

two instruments, e.g., instrument s increases revenue by factor (p – cv + y)/(p – cv), which when factored 

out yields profit as the product  (p – cv + y)/(p – cv) and a profit expression with capacity cost reduced by 

factor (p – cv)/(p – cv + y), which conforms to the structure of profit under instrument l.  

 As ability to pay increases above the sum of variable production cost and the fixed cost of capacity 

per unit of forecasted demand, instrument k becomes viable when budget is high enough, i.e., above the 

budget threshold kb
 that is higher than the threshold for instruments l and s.  For budgets above kb

, in-

strument k dominates l and s for reasons explained above. 

Instrument q cannot incentivize investment in capacity when ability to pay does not exceed the varia-

ble cost of production and capacity. Under a volume guarantee, the manufacturer will either not build ca-

pacity or will set capacity to match the guaranteed volume. Consequently, instrument q is only viable at 

levels of capacity that exceed breakeven volume cf/(p – cv – ck). Clearly, breakeven cannot be achieved if 

p – cv – ck ≤ 0. Given that p – cv – ck > 0, the inequality among the instrument q budget threshold and the 

other budget thresholds, and the inequality among the instrument q incentivized capacity function and the 

other capacity functions can go in either direction. This can be explained by a fundamental difference in 

in the structure of the manufacturer’s capacity decision that is evident by comparing (16) with (7), (8), 

and (15) (e.g., decisions are tied to different probability distributions). Table 2 interprets the results from 

the propositions to identify settings where a particular instrument offers the highest investment in capacity 

for a given budget. These settings are distinguished by up to three dimensions: (1) ability to pay from 

very low to high, (2) capacity cost spanning high variable, high fixed, moderate variable and fixed, (3) 

budget from low to high. 
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Capacity investment is unprofitable for the manufacturer Dominant instrument 

A. Very low ability to pay:  

p – cv ≤ 0 
sales subsidy 

B. Low ability to pay:  

p – cv – max{ck, cf/} ≤ 0 < p – cv 
total-capacity subsidy 

C. Moderate ability to pay, high variable capacity cost: 

p – cv – ck ≤ 0 < p – cv – cf/ 

low budget: total-capacity subsidy 

 

high budget: variable-capacity subsidy 

D. Moderate ability to pay, high fixed capacity cost: 

p – cv – cf/ ≤ 0 < p – cv – ck 

total-capacity subsidy  

or  

volume guarantee 

E. Moderate ability to pay, moderate capacity costs: 

0 < p – cv – max{ck, cf/} and (x2
o) ≤ 0 

low budget: total-capacity subsidy  

or volume guarantee 

 

high budget: variable-capacity subsidy  

or volume guarantee 

Capacity investment is profitable for the manufacturer 

0 < p – cv – max{ck, cf/} and (x2
o) > 0 

Dominant instrument 

F. High ability to pay with low budget variable-capacity subsidy 

G. High ability to pay with high budget variable-capacity subsidy or volume guarantee 

Table 2. Regions of instrument preference. 

 

4.3. Concessional Loan 

A concessional loan refers to a low-interest loan to the manufacturer, i.e., a loan for all or a portion of the 

manufacturer’s investment in capacity. This instrument may be employed when the social investor has 

sufficient cash reserves to provide low-interest loans at rate i1 < i2 where i1 is typically linked to the social 

investor’s return on capital. The social investor does not seek returns on its philanthropic capital (as per 

Internal Revenue Service). The nonprofit social investor’s monies are typically structured as follows. The 

donated capital to the nonprofit is kept in an investment trust. The trust manages the capital as investment 

assets by investing them in a portfolio of return-yielding instruments. As the nonprofit needs more money 

for its programs (including the types of investments discussed in this paper), the trust fund must liquidate 

part of the portfolio and/or use earnings from the trust to transfer to the nonprofit’s programming arm. 

These structures are slightly different in the UK, the US, and other parts of the world. However, in each 

case the nonprofit social investor forgoes earnings from its invested assets when it makes a large invest-

ment and forgoes the opportunity to invest these funds in other activities related to the nonprofit/charita-

ble goals. We have validated that this approach is what drives internal decision-making regarding the cost 

of capital at the major groups that make such investments. 

 A concessional loan lowers the manufacturer’s cost of capital. The savings to the manufacturer from a 

low-interest loan at rate i1 for fraction z of the total investment is structurally equivalent to a total-capacity 

subsidy. To clarify this point, recall that the end-of-horizon cost to the manufacturer of an investment in 
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capacity is k fc x c+ = ( )( )21 k fi c x c+ + . If the manufacturer receives a concessional loan on fraction z of 

the investment, the end-of-horizon cost of the investment is 

  ( ) ( ) ( )( )( )1 21 1 1k f k fi z c x c i z c x c+ + + + − + =
( )

( )2 1

2

1
1

k f

z i i
c x c

i

 − 
− + 

+ 
  

and the manufacturer profit is given in (13) with  

  y =
( )2 1

21

z i i

i

−

+
. 

  While a concessional loan is equivalent to a total-capacity subsidy from the manufacturer’s perspec-

tive, this is not necessarily the case for the social investor. We introduce parameter  ≥ 0 to capture the 

social investor’s cost of a concessional loan as a fraction of the manufacturer’s savings; that is, the manu-

facturer savings for a concessional loan (and total-capacity subsidy) given capacity x is   

  ( )k fy c x c+  

and the social investor cost is  

  ( )k fy c x c  + . 

Clearly, if  = 1, then there is no difference between a total-capacity subsidy and a concessional loan from 

the social investor’s perspective. Differences arise when   ≠ 1, wherein a concessional loan is less (more) 

costly than a total-capacity subsidy when  < 1 ( > 1).  

 The effects of parameter  on the results in propositions 3 and 4 are relatively straightforward;8 instru-

ment l becomes more ( > 1) or less expensive ( < 1) as  deviates from 1. Let ( )lx b  and lb 
denote the 

capacity function and budget threshold for a concessional loan. In effect, parameter b in function ( )lx  is 

replaced by b in function ( )lx , or equivalently, b in ( )lx is replaced by b/ in ( )lx .9 

Corollary 1 (instrument is not needed for capacity investment). Suppose that 
*
2x  > 0. Then  

  lb 
= lb

= 0 

  ( )lx b = ( )/lx b   for all b > 0 

 
8 Our communication with Strategic Investment Fund team at the Gates Foundation indicates that excluding fixed 

costs of building capacity (that are generally significant) has not historically been considered, in part because it adds 

complexity to the instrument. However, it is straightforward to generalize the variable-capacity subsidy to include 

parameter , which yields a model of a concessional loan for a fraction the variable cost of capacity (i.e., fixed cost is 

excluded from the loan). 
9 For the extreme of  = 0, the cost to the social investor is zero, though manufacturer profit and subsidy parameter 

functions for instrument l in Proposition 2 continue to apply. 
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  ( )kx b > ( )ˆ
lx b  for all b > 0 if  ≥ 1 

  ( )lx b > ( )sx b  for all b > 0 if  ≤ 1. 

Corollary 2 (instrument is needed to increase capacity investment). Suppose that 
*
2x  = 0. (i) Suppose 

that p – cv ≤ 0. Then ( )lx b = 0 for all b > 0. (ii) Suppose that p – cv > 0. Then lb 
= lb and ( )lx b =

( )/lx b   for all b > lb 
.  

4.4. Regions of Instrument Dominance 

Our earlier propositions and Table 2 have collectively examined how the preferred instrument is affected 

by budget b, ability to pay p, and nature of variable and fixed capacity costs. In this section, we investi-

gate the regions of instrument dominance in the combination of budget and ability pay (i.e., in (p, b) 

space), and we examine how differences in the relationship between variable and fixed capacity costs af-

fect the preferred instrument.  

We assume throughout the remainder of the paper that forecast error is normally distributed. The nor-

mal distribution is often a reasonable approximation for forecast error due to the Central Limit Theorem 

(e.g., forecast error is the aggregation of noise terms across many buyers).  

We limit consideration of instrument l as described in Section 4.2, i.e., we set  = 1, as the directional 

effect of an increase or decrease in  on the power of instrument l is clear. Table 2 in Section 4.1 identifies 

regimes where the dominant instrument is clear (i.e., A, B, and F in Table 2) and other regimes where the 

dominant instrument is ambiguous (i.e., C, D, E, and G in Table 2). In this section, we illustrate character-

istics of settings where a particular instrument dominates. Recall that a sales subsidy dominates all instru-

ments if and only if ability to pay is not more than variable cost of production (i.e., p ≤ cv). Consequently, 

we limit our numerical illustrations to cases where p > cv.    

The social optimal capacity is x1
* = ( )1 *

1F −  where 
*
1 = 1 – ck/( – cv) is the social optimal service 

level. Figures 2 and 3 identify the instrument in (p, b) space that achieves the highest investment in capac-

ity up to social optimal x1
* (i.e., social welfare decreases as capacity increases beyond x1

*) where x1
* cor-

responds to social optimal service level of 
*
1 = 0.90. Figure 2 illustrates regions of instrument dominance 

for an example with moderate fixed capacity cost and high variable capacity cost, cf/  < ck (e.g., instru-

ment k becomes viable before instrument q as ability to pay increases). Figure 3 illustrates regions of in-

strument dominance for an example with moderate variable capacity cost and high fixed capacity cost, ck 

< cf/ (e.g., instrument q becomes viable before instrument k as ability to pay increases). The demand 

forecast is  = 100 for both figures. Other parameter values are identified under each figure. 
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To illustrate the interpretation of results in the figures, consider Figure 2 at p = 16. Instrument l incen-

tivizes the highest investment in capacity for a budget between 960 (= budget threshold for l) and 1170. 

Instrument k incentivizes greater investment in capacity for a budget between 1171 (= budget threshold 

for k) and 1565. The social optimal capacity is achieved with instrument k and b = 1565 (i.e., dominance 

regions in the plots are identified up to social optimal capacity).  

 
Figure 2. Regions in (p, b) space where instrument l (blue), q (gray), or k (cyan) dominate for an example 

where ck > cf/ (regimes B, C, E, F, G). The horizontal axis is ability to pay (p) and the vertical axis is 

budget (b). The data for the example:  = 100,  = 35, cv = 4, ck = 12, cf = 800. The vertical lines delimit 

the regimes by ability to pay, e.g., the vertical line that appears at p = 27.3 is the minimum price at which 

the manufacturer invests in capacity without a subsidy (at service level = 48.4%). 

 
Figure 3. Regions in (p, b) space where instrument l (blue), q (gray), or k (cyan) dominate for an example 

where ck > cf/ (regimes B, C, E, F, G). The horizontal axis is ability to pay (p) and the vertical axis is 

budget (b). The data for the example:  = 100,  = 13.5, cv = 3, ck = 4, cf = 1600. The vertical lines delimit 

the regimes by ability to pay, e.g., the vertical line that appears at p = 23.6 is the minimum price at which 

the manufacturer invests in capacity without a subsidy (at service level = 84.8%). 
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We briefly sketch the process for creating the figures. The process has subtlety because the optimal 

budget can decrease in capacity due to instrument thresholds, and consequently, optimal incentivized ca-

pacity can exhibit jumps at budget points where the optimal instrument changes.10 For each ability-to-pay, 

we solve 

( )*j x =
 

( ) 
, ,

argmin j
j k l q

b x


for all x ≤ 
*
1x ,              (18) 

then sort 
( )*j x

b  from smallest-to-largest and remove all 
( )*j x

b that satisfy 
( )*j x

b ≥
( )* 'j x

b for some x > x  (be-

cause instrument j*(x) is dominated by instrument j*(x)). Figures 2 and 3 report 
( )*j x

b at values of ability to 

pay that range between 4.5 and 30, which span regimes B through G in Table 2. 

We present two related figures to support interpretations of figures 2 and 3. Figure 4 displays the 

threshold curves—service level j
 = ( )jF x  (left plot) and budget jb

(left plot)—for the calibration used 

in Figure 2. Figure 5 displays the curves for the calibration used in Figure 3. The left plots also identify 

the manufacturer’s optimal service level without a subsidy instrument (i.e., manufacturer’s newsvendor 

ratio). 

The capacity threshold curves in the left plots of figures 4 and 5 illustrate the structural difference be-

tween volume guarantee (instrument q) and the other instruments. Excluding instrument q, capacity 

threshold curves of other instruments all intersect at ability to pay p where the manufacturer is willing to 

invest in capacity without a subsidy. It should be noted here that the volume guarantee (q) can incentivize 

much lower investments in capacity at slightly lower levels of ability to pay. This distinctive property al-

lows q to become the dominant instrument at low budget levels in some settings (as illustrated in figures 2 

and 3 in regime E). Finally, we note that differences in budget thresholds that abide by inequalities ap-

pearing in Proposition 5 can be significant (e.g., Figure 4 right plot). 

 

 
10 For example, for the Figure 2 calibration with p = 14, the capacity threshold for instrument k is xk

 = 140. The 

least-cost instrument to incentivize capacity 139 is l with budget $2205, whereas the least-cost instrument to incen-

tivize capacity 140 is k with budget $1501. In this example, instrument k dominates instrument l at budget $1501 

(assuming social optimal capacity is 140 or more), and there is a jump in incentivized capacity when budget in-

creases from 1500 to 1501; l is the optimal instrument at b = 1500 yielding capacity xl(1500) = 112, and k is the opti-

mal instrument at b = 1501 yielding capacity xk(1501) = 140.  
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Figure 4. The left plot shows the threshold service level for instrument l (blue), q (gray), and k (cyan). 

The black line shows the manufacturer’s newsvendor ratio. The right plot shows the threshold budget for 

the three instruments. The threshold service level for l (and s) is fixed at 48.4%, which is the service level 

where the three curves intersect at ability to pay = $27.3. The calibration is the same as Figure 2. 

 

  
Figure 5. The left plot shows the threshold service level for instrument l (blue), q (gray), and k (cyan). 

The black line shows the manufacturer’s newsvendor ratio. The right plot shows the threshold budget for 

the three instruments. The threshold service level for l (and s) is fixed at 84.8%, which is the service level 

where the three curves intersect at ability to pay = $23.6. The calibration is the same as Figure 3. 

 

Figures 2 – 5 illustrate that regions of instrument dominance are not simple. However, at a high level, 

there is basic pattern that emerges that depends on whether variable cost of capacity (ck) is low or high 

relative to fixed cost of capacity per forecasted unit. In all cases (as noted in Table 2), instrument s domi-

nates at very low p (not included in the figures) and l dominates at low p. At moderate p, instrument l 

tends to dominate when budget is low. At high budget levels, the picture is more complex with instrument 

k tending to dominate when the ratio of fixed-to-variable capacity cost ((cf/)/ck) is low and instrument q 

tending to dominate otherwise. At high p (e.g., to the point where the manufacturer is willing to invest in 

capacity without incentives), instrument k tends to dominate at low budget but may be supplanted by in-

strument q when the budget is high. These high-level lessons are summarized in the form of a strategy 

grid in Figure 6. 
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Figure 6. Strategy grid illustrating conditions under which a particular instrument dominates or is likely 

to dominate the other instruments. 

 

5.  Numerical Illustrations of Social Investor Instruments 

In this section, we illustrate how our model applies on three real-world cases. Our goal in this section is 

not to develop new technical results beyond what is developed in sections 3 and 4. Our numerical analysis 

is also not an attempt to evaluate or second-guess actions for a given case. Rather, this section presents 

how our model helps decision makers identify the best instrument to incentivize capacity to serve socially 

desirable output of health products.  

For our calibrations, we use data from the markets for which an instrument has been used in the past. 

We combine publicly available information on market parameters with estimates from unpublished stud-

ies and private sources.11 As such, we mask cost-related parameters by normalizing the marginal cost of 

capacity ck to 1, and proportionally adjusting the remaining parameters. The three products analyzed in 

our numerical illustration include a sufficient degree of heterogeneity in the parameters associated with 

the market and manufacturer’s cost terms. They also represent a range of different health products. We 

emphasize that our purpose is to illustrate the application of our model. We seek reasonable estimates of 

values based on available data and communications with those who have first-hand knowledge. The val-

ues of the parameters in our calibration are listed in Table 3. 

 
11 Sources for estimating parameters varied by product. We summarize the nature of sources here, some of which are 

internal and confidential (i.e., estimated by the social investor). Demand forecast parameter estimates: public an-

nouncements of volumes, historical data for an earlier generation of a product. Manufacturer cost structure: pub-

lished studies of COGS analysis, annual reports (for cost of capital). Ability to pay (WTP): internal studies, pub-

lished studies of WTP on comparable products, historical prices paid for comparable product. Social value per unit: 

cost effectiveness studies published for comparable product, internal analysis.  
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The values of i2 and i1 in Table 3 warrant explanation. Recall that the length of a period in our model 

corresponds to the length of the investment horizon. Our calibration of i2 uses a mapping from an annual 

rate to a rate for the investment horizon. We summarize our mapping here and refer the reader to Appen-

dix C in the appendix for additional details. Let T denote the duration of the investment horizon in years. 

Recall that 2 in our model is manufacturer profit at time T, and that i2 represents the manufacturer’s cost 

of capital over the investment horizon. For a given annul cost of capital, denoted r, one alternative is to 

apply annual compounding over the investment horizon to obtain  

i2 = (1 + r)T – 1.                    (19) 

This alternative is exact if the investment occurs at time zero and all payoffs occur at time T. While there 

is a  delay between initial cash outflow and the beginning of cash inflows due to sales (e.g., time to 

build/deploy capacity), a delay of no cash inflow until time T is extreme for the cases we consider, e.g., 

(19) may significantly overstate the value of i2. Instead, we use a mapping from r to i2 (and similarly to i1) 

that assumes a payoff at the end of each year equal to fraction 1/T of the total cash inflow over the invest-

ment horizon, i.e.,  

i2 =
( )

( )1 1
1 1

T

T

rT
r

r

 
  + −
 + − 

.                (20) 

The term in the first parentheses is the growth rate over time T with no compounding divided by the 

growth rate over time T with annual compounding. We note that any calibration of parameter values is not 

exact, and there may be alternative reasonable approaches to estimate i2 from an annual rate. However, 

our discussions with those who have first-hand knowledge worked on the three cases indicate that (20) is 

reasonable for the numerical illustrations.  

 

Parameter  Product A Product B Product C 

Investment horizon (T) 6 years 3 years 3 years 

Demand forecast over investment horizon () 66m 54.8m 134.1m 

Forecast error () 9.2m 7.4m 50.1m 

LMIC ability to pay (p) $9.88 $6.00 $7.00 

Manufacturer variable cost (cv) $7.00 $4.00 $4.00 

Manufacturer unit capacity cost (ck) $1.00 $1.00 $1.00 

Manufacturer fixed cost (cf) $80m $12.5m $45m 

Manufacturer cost of capital over the investment horizon (i2) 25.5% 53.7% 16.4% 

Social investor concessional loan rate over the investment 

horizon (i1) 
18.2% 10.2% 2.0% 

Ratio of social investor cost to manufacturer savings () 1.00 0.25 0.50 

Social value per unit of the health product () $63.08 $10.00 $10.00 

Table 3. Parameters for the three products used for numerical illustration (m = 1 million). 
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Figure 7. Incentivized capacity (vertical axis) as a function of budget (horizontal axis) for the four instru-

ments – sales subsidy (xs(b)), capacity subsidy (xk(b)), concessional loan (xl(b)), volume guarantee (xq(b)) 

for Product A (left plot), Product B (middle plot), and Product C (right plot). 

 

Ignoring the participation constraint, the optimal capacities for products A, B and C are 
o
2x  = 68m, 

49m, 148m, respectively, which compare with the respective socially optimal capacities of 
*
1x  = 84m, 

60m, and 177m. For product A, the manufacturer will not invest in capacity without a subsidy (
*
2x = 0). 

The manufacturer will invest in capacity without a subsidy for products B (
*
2x = 49) and C (

*
2x =148). Fig-

ure 7 shows some diversity in the dominant instrument over the range of budgets reported: a volume guar-

antee for product A, a volume guarantee for product B at low budgets and a concessional loan at high 

budgets, and a concessional loan for product C. 

6.  Summary and Implications for Social Investors 

We present a framework to help social investors evaluate instruments for incentivizing a manufacturer to 

invest in production and distribution capacity. We focus on LMIC markets that are less desirable by man-

ufacturers to invest in sufficient capacity. The framework illuminates how relevant factors interact to in-

fluence the relative attractiveness of different instruments. The same framework is also a springboard to 

numerically evaluate instrument costs. Barriers to manufacturer investment stem from a combination of 

lower margins and higher risk, compared to developed-country markets. Margins are lower because of a 

lower ability to pay, and they may be reduced because of higher costs of distribution due to less devel-

oped infrastructure. Risk is higher because of greater market uncertainty due to limited data on health 

product needs and opacity around government approvals of reimbursement lists. Collectively, these chal-

lenges elevate the importance of our framework developed specifically for LMIC markets in incentivizing 

capacity investments for global health products. 

We consider four basic types of subsidy instruments in our framework–-three that target the barrier of 

low margin through payments to increase revenue or reduce cost, and one that targets the barrier of high 
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risk through a volume guarantee. A sales subsidy pays the manufacturer an amount for each unit sold, a 

variable-capacity subsidy pays the manufacturer an amount for each unit of capacity built, and a total-ca-

pacity subsidy (and its close relative: concessional loan) pays the manufacturer an amount for each dollar 

spent (fixed and variable) on capacity.  

Each instrument has its advantages that raise it to the preferred choice in some settings. Conditions 

under which a particular instrument is preferred are straightforward in some cases and are nuanced in 

other cases. A sales subsidy is the only viable instrument when ability to pay is very low. It is the most 

generous instrument from the perspective of the manufacturer, which is what causes the sales subsidy to 

be dominated by other instruments when ability to pay exceeds marginal production cost. The total-capac-

ity subsidy is preferred when ability to pay exceeds marginal production but is below two measures of 

unit cost:12 (1) the sum of marginal production and marginal capacity cost, (2) the sum of marginal pro-

duction cost and fixed cost capacity per unit of forecasted demand. When condition (1) holds, a volume 

guarantee is not viable because each guaranteed unit of sales returns a loss to the manufacturer. When 

condition (2) holds, a variable-capacity subsidy is not viable because it is not generous enough to satisfy 

the manufacturer’s participation constraint, i.e., manufacturer gross profit (excluding fixed capacity cost) 

at any incentivized capacity does not exceed the fixed cost of capacity.  

When condition (1) holds, but condition (2) does not, then a total-capacity subsidy is preferred when 

budget is low, while the variable-capacity subsidy is preferred at higher budgets. Alternatively, when con-

dition (1) holds, but condition (2) does not, then the dominant instrument is either a total-capacity subsidy 

or a volume guarantee with the preferred instrument dependent on parameter values and budget. If neither 

condition holds, then the preferred instrument among the three depends on parameter values and budget 

with one exception—if the manufacturer is willing to invest in capacity (but at a level below is desired by 

the social investor), then the total-capacity subsidy is excluded from consideration, i.e., at any budget, ei-

ther a variable-capacity subsidy or a volume guarantee will result in higher incentivized capacity than a 

total-capacity subsidy. 

Finally, we reinforce that a concessional loan instrument is equivalent to a total-capacity subsidy 

when the manufacturer savings and social investor costs of the loan instrument are equal. As illustrated 

with products B and C in Section 5, this is not always the case; a concessional loan becomes more attrac-

tive than a total-capacity subsidy when the loan cost to the social investor is less than the loan savings to 

the manufacturer. 

Our study points to several future research opportunities. We note that a sales subsidy is less suscepti-

ble to moral hazard in settings where the manufacturer can meaningfully affect demand through its costly 

 
12 The total-capacity subsidy yields higher incentivized capacity for any budget than a sales subsidy, and neither the 

variable-capacity subsidy nor the volume guarantee will incentivize capacity investment at any budget. 
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actions. The manufacturer receives a payment for each unit sold under a sales subsidy. For the other in-

struments, the payment to the manufacturer is unaffected by sales. The issue of moral hazard is a worthy 

topic for future research. An additional worthy topic for future research is accounting for the possibility 

that the manufacturer has different beliefs regarding demand than the social investor. This issue, which 

can arise in practice, likely requires a significant and challenging new modeling dimension that seeks to 

characterize equilibria of a forecast signaling game.  

While our study is most essential for manufacturing and distribution capacity needs for global health 

products in the LMIC markets, its application is broader as the key insights apply to developed markets. 

This can be seen from the COVID-19 pandemic: The question of how governments in developed nations 

can build manufacturing capacity in a rapid and effective manner is a public policy debate. Considering 

that the same set of concerns pose greater risks in LMIC markets, our study helps all social investors (e.g., 

government, development finance institution, philanthropic foundation) determine how best to utilize 

their financial resources for building capacity to treat diseases. Investments in such manufacturing capa-

bilities can be perceived as an insurance in fighting pandemics and saving lives.  
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Appendix (Online Supplement) 

A. Regions of Instrument Cost Dominance 

We assume that forecast error is normally distributed. Thus, uncertain demand can be expressed as  

  d = z +   

where z is a standard normal random variable with pdf and cdf denoted as (z) and (z). Therefore,  

  ( )|E d d x F x   = |
x x

E z z
 

 
 

− −   
+    

   
=

x x 
 

 

− −   
 −   

   
 

   min ,E d x = ( ) ( )|E d d x F x xF x  +  = 1
x x x

x
  
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  

 − − −     
 − + −       

      
 

(see Webster 2009). Let m = p – cv to simplify notation,  = F(x) =
x 



− 
 

 
, o = ( )o

2F x , and j
 =

( )jF x . We replace x with  in our analysis (simplifies expressions), e.g., ( )*j  =
 

( ) 
, ,

argmin j
j k l q

b 


for all 

 ≤ 
*
1  in place of (18). (Note that if 

*
2x  > 0, then j

 = ( ) min : 0j    = o for j ∈ {s, k, l}.) Substi-

tuting into the profit expressions (see (1) and propositions 2 and 4), we obtain profit as a function of ser-

vice level  > j
 ,  

( )s  = ( )( )( )1

1

k
f

c
c  



− 
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− 
  

  ( )k  = ( )( )( )1
fm c  −−  −  if m – cf/ > 0 

( )l  = ( )( ) ( )( )1 1 /f km c c   −−  − −  if m > 0  

( )q  = ( ) ( )( )1
k fm c c  −− +  −  if m – ck > 0  

( )  = ( )( ) ( ) ( )( ) ( )( )1 1 11 k fm c c         − − − −  + − +  − +  −
 

. 

Therefore, from (12), social investor cost as a function of service level  > j
 = ( ) min : 0j     can 

be expressed as  

  ( )sb  = ( ) ( )s   − =
( )

( ) ( ) ( )( )1 11
1

1

kc m 
     



− − − − 
 + −  −   − 

 

  ( )kb  = ( ) ( )k   − = ( )( ) ( )11kc m    − − − +    if m – cf/ > 0 

  ( )lb  = ( ) ( )l   − = ( )( ) ( )11 /k f kc m c c   − − − +  +   if m > 0 
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  ( )qb  = ( ) ( )q   − = ( ) ( )( )1 1m    − −  + 
 

 if m – ck > 0. 

(Note that the functions cannot be analytically inverted to express j as function of b, e.g., no closed-form 

expression for (z).) We include the expressions for instrument s above for completeness. However, the 

region where s dominates the other instruments is clear, i.e., s dominates if and only if m ≤ 0 (which im-

plies 
*
2x  = 0). The preferred instrument is less clear when m > 0. The following proposition identifies 

ability-to-pay indifference functions for each instrument pair among k, l, and q when m > 0.  

Proposition A1. Suppose that p – cv > 0. Then  

(i) p > cv + cf/:   ( )kb  < ( )lb   iff  > k
  

(ii) p > cv + ck:      ( )qb  ≤ ( )lb   iff at least one of the following conditions hold: 

 > q
  and p ≤ ( )qlp  =

( )( )

( ) ( ) ( )( ) ( )

1

1 11 1

k f

v
f

k

c c
c

c

c

  

      

−

− −

+  +
+

− +  +  + −

   

or l
 >  > q

 =
( )/f v kc p c c 



 − − −
  

 

  

(iii) p > cv + max{cf/, ck}: ( )qb  ≤ ( )kb  iff at least one of the following conditions hold: 

 > q
  and p ≤ ( )qkp  =

( )( )
( ) ( ) ( )( )

1

1 11

k

v

c
c

  

     

−

− −

+ 
+

− +  + 
 

or k
 >  > q

 . 

Proof. Part (i). If 
*
2x  > 0, then the result follows directly from Proposition 3; otherwise result follows 

from Proposition 4(ii) and (iv) and the fact that capacity functions ( )kx b and ( )lx b  are strictly increasing 

in b, i.e., ( )kx b = 0 and ( )lx b > 0 for all b ∈ ,l kb b  
   and ( )kx b > ( )lx b  for all b > kb

> lb
 imply ( )kb  <

( )lb   iff  > k
 . 

 Part (ii). Solving ( )qb  ≤ ( )lb  for p, 

  ( )1 /k f kc c c  − +  +  ≥ ( ) ( )( ) ( ) ( )1 1 11 /f km m c c        − − −    +  + − +  +  
  

             = ( ) ( ) ( )( ) ( )1 11 1 /f km c c      − − − +  +  + −
 

> 0 
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  p ≤ ( )qlp  =
( )( )

( ) ( ) ( )( ) ( )

1

1 11 1

k f

v
f

k

c c
c

c

c

  

      

−

− −

+  +
+

− +  +  + −

 . 

The expression for q
  follows from the breakeven volume qx

= cf/(m – ck). 

 Part (iii). Solving ( )qb  ≤ ( )kb   for p,  

  ( )1
kc   − +   ≥ ( ) ( )( ) ( ) ( )1 1 11m m       − − −    +  + − +   

  

         = ( ) ( ) ( )( )1 11m      − − − +  + 
 

> 0 

  p ≤ ( )qkp  =
( )( )

( ) ( ) ( )( )

1

1 11

k

v

c
c

  

     

−

− −

+ 
+

− +  + 
.   

 To generate figures 4 and 5, we compute o = v k

v

p c c

p c

− −

−
 and q

 =
( )/f v kc p c c 



 − − −
  

 

 directly, 

and we numerically solve j
 = ( ) min : 0j    for  j ∈ {s, k, l } to obtain j

 . We numerically invert 

the indifference functions ( )qlp   and ( )qlp  , for which the relevant portions of these curves appear in 

the figures.  

B. Proofs 

Proof of Proposition 2. Part (i). Observe that manufacturer profit j(x, y) exhibits a newsvendor structure 

with respect to decision x. This observation underlies the following expressions for the manufacturer’s 

capacity decision given that the participation constraint is ignored:  

( )ˆ
sx y = ( ) 

0

arg max ,s
x

x y


=
( )

1 min ,1k

v

c
F

p c y

−

+

     
 − +   

 

( )ˆ
kx y = ( ) 

0

arg max ,k
x

x y


=
( )

( )
1 1

min ,1
k

v

y c
F

p c

−

+

  −   
 −   

, 

which, given (6), reduce to (7) and (8). 

 Part (ii). We invert ( )ˆ
jx y  and substitute into ( ),j x y  for x >

o
2x :  

  ( )ˆ
sx y = 

1 k

v

c
F

p c y

−  
 

− + 
    ( )sy x =

( )
( )k

v

c
p c

F x
− −  

  ( )s x = ( )( ),s sx y x = ( )( )  min ,v s k fp c y x E d x c x c− + − −  
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        =
( )

 min ,k
k f

c
E d x c x c

F x

 
− −  

 

=
( )

( ) ( )( )|k
k f

c
E d d x F x xF x c x c

F x

 
  + − −    

 

 

        =
( )

( )|k
f

c
E d d x F x c

F x

 
  −    

 
 

  ( )ˆ
kx y =

( )1 1 k

v

y c
F

p c

−  − 
 

− 
    ( )ky x = ( )1 v

k

p c
F x

c

 −
−  

 
 

  ( )( ),k kx y x = ( )   ( )( )min , 1v k k fp c E d x y x c x c− − − −  

        = ( )   ( )min , v
v k f

k

p c
p c E d x F x c x c

c

 −
− − − 

 
   

        = ( ) ( ) ( ) ( )( )|v fp c E d d x F x xF x xF x c −  + − − 
   

        = ( ) ( )|v fp c E d d x F x c −  −  .    

Proof of Proposition 3. Part (i). From  

( )s x =
( )

( )|k
f

c
E d d x F x c

F x

 
  −    

 
 

(see Proposition 2), it is clear that ( )s x → ∞ as x → ∞, which implies that sx
is finite. Consequently, sb

is finite. Furthermore,   

( )2x = ( ) ( )|v s s k s fp c E d d x F x c x c   −  − −   < ( )/v f k sp c c c x − − − < 0 

(due to p – cv – cf/ ≤ 0), and thus,  

  ∞ > sb
= ( ) ( )s s sx x  − = ( )sx− > 0. 

From Proposition 2, for any x >
o
2x , 

 ( )k x = ( ) ( )|v fp c E d d x F x c −  −  ≤ ( )/v fp c c − − ≤ 0 

which implies ( )kx b = 0 for all b > 0, and kb
= ∞.  

 Part (ii). Following the arguments in the proof of Part (i), it follows that 0 < sb
< ∞ and sx

>
o
2x . Thus,  

( )' x < 0 for all x >
o
2x                    (A1) 

  ( )sF x < ( )o
2F x = k

v

c

p c−
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  ( )k sx = ( ) ( )|v s s fp c E d d x F x c  −  −  =
( )

( ) ( )
( )|

/

s k
s s f

k v s

F x c
E d d x F x c

c p c F x



 



 
    −  −
 

 

    <
( )

( ) ( )
( )

o
2

|
/

k
s s f

k v s

F x c
E d d x F x c

c p c F x

 



 
    −  −
 

=
( )

( )|k
s s f

s

c
E d d x F x c

F x

 



 
    −  
 

 

= ( )s sx = 0. 

Therefore,  

  sb
= ( ) ( )s s sx x  − = ( )sx− < ( ) ( )k s sx x  − < ( ) ( )k k kx x  − = ( )kx− = kb

 

and it follows that 0 < sb
< kb

< ∞, which in turn implies 0 = ( )kx b < ( )sx b for all b ∈ ( ,s kb b  
 . 

 As noted in Section 4.1, the cost to incentivize investment in capacity x under instrument j (when via-

ble) is the difference in manufacturer profits with, and without, the instrument (see (12)). Furthermore, for 

x >
o
2x , 

 ( )k x =
( )

( ) ( )
( )|

/

k
f

k v

F x c
E d d x F x c

c p c F x

 
  −    −  

<
( )

( )|k
f

c
E d d x F x c

F x

 
  −    

 
< ( )s x (A2) 

which, in conjunction with (A1) and (12), implies ( )kb x < ( )sb x for all x ≥ kx
, and thus 

0 < ( )sx b < ( )kx b for all b > kb
. 

 Part (iii). If ( )o
2x > 0, then 

*
2x  =

o
2x > 0 and sb

= kb
= 0 (see (11)). Then, from (A2), it follows that  

0 <
*
2x < ( )sx b < ( )kx b  for all b > 0.  

Proof of Proposition 4. Part (i). From the newsvendor structure of the manufacturer’s profit function, it 

follows that  

  ( )ˆ
lx y = ( ) 

0

arg max ,l
x

x y


=
( )

( )
1 1

min ,1
k

v

y c
F

p c

−

+

  −   
 −   

 

  ( )ˆ
qx y = ( ) 

0

arg max ,q
x

x y


=
  ( )

1

max ,
min ,1k

d y

v

c
F

p c

−

+

     
 −   

, 

which, given (6), reduce to the expressions in Proposition 4(i). 

 Part (ii). We invert ( )ˆ
jx y  and substitute into ( ),j x y  for x >

o
2x :  

( )ˆ
lx y =

( )1 1 k

v

y c
F

p c

−  − 
 

− 
    ( )ly x = ( )1 v

k

p c
F x

c

 −
−  

 
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  ( )i x = ( )( ),i ix y x = ( )   ( )( )( )min , 1v i k fp c E d x y x c x c− − − +  

       = ( )   ( )( )min , v
v k f

k

p c
p c E d x F x c x c

c

 −
− − + 

 
   

       = ( ) ( )
( )

( )
|

/
v f

k v

F x
p c E d d x F x c

c p c

 
 −  −     − 

. 

For instrument q, note that  

  
  ( )

max ,d y
F x =

( )

1,         

,  

x y

F x x y





 . 

Therefore,  

  ( )ˆ
qx y = ( )    

0

arg max min max , ,v k f
x

p c E d y x c x c


− − − =

o o
2 2

o
2

,  

,   

x y x

y y x

 




 , 

which implies  

( )qy x = x  

( )q x = ( )   min max , ,v k fp c E d x x c x c− − − = ( )v k fp c c x c− − −   

for all x >
o
2x .  

Proof of Proposition 5. Part (i). From propositions 2 and, instrument j ∈ {k, l, q} cannot incentivize in-

vestment in capacity (i.e., ( ),j x y < 0 for any y > 0). Therefore, kb
= lb

= qb
= ∞ and 0 = ( )kx b = ( )lx b =

( )qx b . Since ( )o
2x < 0, sx

= ( )1 0s − >
o
2x , and it follows that   

  sb
= ( )s sb x = ( ) ( )s s sx x  − = ( )sx− ∈ (0, ∞)   

0 < ( )sx b  for all b > sb
. 

Part (ii). First, from Proposition 3(ii), 

 0 < sb
< kb

= ∞ and 0 = ( )kx b < ( )sx b for all b > sb
. 

Second, from Proposition 4, it follows from p – cv – max{ck, cf/} ≤ 0 that  

qb
= ∞ and ( )qx b = 0 for all b > 0.       

What remains is to show that lb
= sb

and ( )sx b < ( )lx b . From propositions 2 and 4, for any x >
o
2x , 

  ( )s x =
( )

( )|k
f

c
E d d x F x c

F x

 
  −    

 
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  ( )l x = ( ) ( )
( )

( )
|

/
v f

k v

F x
p c E d d x F x c

c p c

 
 −  −     − 

 

      =
( )

( ) ( )
( )|

/

k
f

k v

F x c
E d d x F x c

c p c F x

    
  −        −      

=
( )

( )
( )

/
s

k v

F x
x

c p c


 
  − 

 

Therefore,   

  ( )s sx = 0 = ( )l sx , 

which implies lx
= sx

 and lb
= sb ∈ (0, ∞). Finally, from ( )l x < ( )s x  for x >

o
2x  (see (17)), it follows 

that  

( )lx b > ( )sx b > 0 for all b > lb
= sb

.         

 Part (iii). From the proof of Part (ii), 

0 < sb
= lb

< qb
= ∞ 

0 = ( )qx b < ( )sx b < ( )lx b  for all b > sb
= lb

, 

and from Proposition 3(ii),  

sb
< kb

< ∞ and ( )sx b < ( )kx b  for all b > kb
. The above results yield Part (iii).  

 Part (iv). From the proof of Part (ii), 

0 < sb
= lb

< kb
= ∞ 

0 = ( )kx b < ( )sx b < ( )lx b  for all b > sb
= lb

 

What remains is to show qb
< ∞. From Proposition 4,  

  ( )q x = ( )v k fp c c x c− − − . 

Thus, qx
 satisfies  

  ( )q qx = ( )v k q fp c c x c− − −  qx
=

f

v k

c

p c c− −
< ∞,  

i.e., qx
is breakeven volume. Note that -∞ < ( )qx < ( )o

2x < 0 and  

  qb
= ( )q qb x = ( ) ( )q q qx x  − = ( )qx− = ( )  ( )min ,v q k q fp c E d x c x c − − − − < ∞. 

Part (v). The results follow from the proofs of parts (iii) and (iv), i.e., s, l, and k results for the case of 

p – cv – cf/ > 0, and s, l, and q results for the case of p – cv – ck > 0.  
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Proof of Proposition 6. Since 
*
2x  =

o
2x  > 0 (i.e., capacity investment occurs without an instrument), it fol-

lows that  

  0 < ( )o
2x = ( )  o o

2 2min ,v k fp c E d x c x c− − − ≤ ( ) o
2v k fp c c x c− − − ,  

which implies p – cv > cf/, as well as 0 = sb
= kb

= lb
= qb

(see (11)). Furthermore, if p – cv – ck ≤ 0, then 

(x) ≤ 0 for all x, which from ( )o
2x > 0 implies p – cv > ck. Therefore, p – cv > max{ck, cf/}. 

From Proposition 3, 0 <
*
2x < ( )sx b < ( )kx b  for all b > 0. Note that for yq =

o
2x  (=

*
2x ),  

  ( )o
2qb x = ( ) ( )o o

2 2q x x − = ( ) ( )o o
2 2|v k f v k fp c c x c p c c E d d x c  − − − − − −  −  

 

        = ( ) o o
2 2|v kp c c E x d d x − − −   = ( ) ( )o

2vp c E x d
+

− −  

        = ( ) 1 k
v

v

c
p c E F d

p c

+

−
  

− −   −  

> 0, 

and for incentivized capacity x >
o
2x , which requires volume guarantee yq(x) = x (see Proposition 4), we 

have 

  ( )qb x = ( ) ( )q x x − = ( ) ( )vp c E x d
+

− − . 

Therefore, incentivizing capacity x >
o
2x  requires a budget larger than ( )o

2qb x , which implies  

  ( )qx b =
( ) ( )

( ) ( ) ( )

o o
2 2

1 o
2

,        0,

,  

v

q v

x b p c E x d

b b b p c E x d

+

+
−

   − −
   

  − −


 . 

 For the remaining instruments j ∈ {s, k, l}, note that for x >
o
2x , 

  ( )sb x = ( ) ( )s x x − = ( )  min ,sy x E d x =
( )

( ) ( ) ( )( )|k
v

c
p c E d d x F x xF x

F x

 
 − −  +    

 
 

       =
( )

( ) ( )  | min ,k
k v

c
E d d x F x c x p c E d x

F x

 
  + − −    

 
 

  ( )kb x = ( ) ( )k x x − = ( )k ky x c x = ( )1 v
k

k

p c
F x c x

c

  −
−   

  

 

    = ( ) ( )k vc x p c xF x− −  

  ( )lb x = ( ) ( )l x x − = ( )( )l k fy x c x c+ = ( ) ( )1 v
k f

k

p c
F x c x c

c

  −
− +   

  
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    =
( )

( )
( ) ( )1

/
k f v

k v

F x
c x c p c xF x

c p c

 
+ − − −  − 

. 

Furthermore, ( )jb x  is strictly increasing in x and ( )k x < ( )l x < ( )s x for all x >
o
2x  (see (17)). There-

fore ( )jb x  is invertible and ( )kb x < ( )lb x < ( )sb x for all x >
o
2x =

*
2x  , which due to ( ) ( )1

j jx b b b−= , im-

plies  

0 <
*
2x  < ( )qx b < ( )sx b < ( )sx b < ( )kx b  for all 0 < b ≤ ( ) ( )*

2vp c E x d
+

− −  

0 <
*
2x < ( )sx b < ( )lx b < ( )kx b  for all b > 0.  

C. Mapping Annual Rate to Investment Horizon Rate 

The net present value (NPV) of annuity of amount 1/T that is paid at the end of year 1, 2, …, T at annual 

rate r (for a total payout of $1) is  

  N1 =
( )

( )

1 11

1

T

T

r

T r r

 + −
 
 + 

. 

The net present value of a payout $1 at time T2 and annual rate r is  

  N2 =
( ) 2

1

1
T

r+
.  

Setting N1 = N2 and rearranging,  

  i2 = ( ) 21 1
T

r+ − =
( )

( )1 1
1 1

T

T

rT
r

r

 
  + −
 + − 

. 

Thus, the NPV of total payoff P with equal payments at the end of each year for T years from investment 

I at time 0 is equal to the NPV of total payoff P received at time T2 from investment I at time 0, i.e.,  

  2N P I− =
21

P
I

i
−

+
=

( )( )21 1 1
T

P
I

r
−

+ + −
=

( )

( )

1 1

1

T

T

rP
I

T r r

 + −
  −
 + 

= 1N P I− . 


